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Abstract. We construct singular quartic double fivefolds whose Kuznetsov component ad-

mits a crepant categorical resolution of singularities by a twisted Calabi–Yau threefold. We

also construct rational specializations of these fivefolds where such a resolution exists without

a twist. This confirms an instance of a higher-dimensional version of Kuznetsov’s rationality

conjecture, and of a noncommutative version of Reid’s fantasy on the connectedness of the

moduli of Calabi–Yau threefolds.

1. Introduction

We work over an algebraically closed field k of characteristic 0. Let X be a smooth prime
Fano variety of index r, i.e. Pic(X) ∼= Z is generated by an ample line bundle OX(1) such
that ωX

∼= OX(−r). Then the bounded derived category of coherent sheaves on X admits a
semiorthogonal decomposition

Db(X) = ⟨Ku(X),OX ,OX(1), . . . ,OX(r − 1)⟩ (1.1)

where Ku(X) ⊂ Db(X) is the Kuznetsov component, defined explicitly as the full subcategory

Ku(X) = {F ∈ Db(X) | Ext•(OX(i), F ) = 0 for 0 ≤ i ≤ r − 1 } .

The category Ku(X) should be thought of as the “interesting part” of Db(X) obtained as the
orthogonal to some tautological pieces coming from the polarization of X.

Remark 1.1. In some cases, Ku(X) can be refined by taking the orthogonal to some addi-
tional tautological objects on X (see [Kuz14b] for examples), but in this paper we will only
be concerned with Ku(X) as defined above.

Kuznetsov components have recently been very influential in algebraic geometry, due in part
to their close connections to birational geometry. The most famous example is when X ⊂ P5

is a cubic fourfold, in which case Kuznetsov [Kuz10] conjectured that X is rational if and only
if Ku(X) is equivalent to the derived category of a K3 surface. This has been verified for all
known rational cubic fourfolds, and there is now a precise Hodge-theoretic characterization
of when Ku(X) is equivalent to the derived category of a K3 surface [AT14, BLM+21], but
in general the conjecture remains tantalizingly open.

The heuristics behind Kuznetsov’s rationality conjecture suggest more generally that if
Ku(X) is a Calabi–Yau category of dimension dim(X)− 2 and X is rational, then Ku(X) is
equivalent to the derived category of a smooth projective Calabi–Yau variety (see [Kuz16]).
Most work on this problem has been confined to the case dim(X) = 4. The purpose of this
paper is to investigate an interesting 5-dimensional example.

Namely, we take X to be a quartic double fivefold, i.e. a double cover X → P5 branched
along a quartic hypersurface, whose Kuznetsov component is defined by the semiorthogonal
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decomposition

Db(X) = ⟨Ku(X),OX ,OX(1),OX(2),OX(3)⟩ . (1.2)

By [Kuz19, Corollary 4.6] the category Ku(X) is Calabi–Yau of dimension 3. Therefore,
Kuznetsov’s philosophy suggests the following.

Conjecture 1.2. If X is a smooth quartic double fivefold which is rational, then there exists
an equivalence Ku(X) ≃ Db(W ) for a smooth projective Calabi–Yau threefold W .

This conjecture appears to be quite difficult. In fact, it follows from a Hochschild homology
computation that Ku(X) is not equivalent to the derived category of any smooth projective
variety (see [Per21, Lemma 6.9]), so the conjecture is equivalent to the irrationality of every
smooth quartic double fivefold. This remains open despite many recent breakthroughs on
the rationality problem. In fact, at the moment no quartic double fivefold is known to be
irrational, and with the current techniques the best one could hope to prove is irrationality
in the very general case.

In this paper, we instead investigate the situation for certain singular quartic double five-
folds X, which are more tractable. In this situation, the subcategory Ku(X) ⊂ Db(X) may
be defined by the same semiorthogonal decomposition (1.2) as in the smooth case. Our first
main result is as follows.

Theorem 1.3. Let X → P5 be a double cover branched along a quartic hypersurface Y ⊂ P5

which is singular along a line L ⊂ P5.

(i) For general such Y , there is a crepant categorical resolution of singularities of Ku(X)
by Db(W+,A+), where W+ is a 3-dimensional Calabi–Yau algebraic space which is
not projective, and A+ is an Azumaya algebra on W+.

(ii) If in the situation of (i) the Brauer class of A+ is trivial, then X is rational.

Remark 1.4. The notion of a crepant categorical resolution1 is due to Kuznetsov [Kuz08b]
and abstracts the properties of the derived category of a crepant resolution of singularities of
a variety with rational singularities.

The proof of Theorem 1.3 is based on a study of the derived category of a natural resolution

of singularities X̃ → X. Roughly, we define a Kuznetsov component K̃u(X) ⊂ Db(X̃) which is

a crepant categorical resolution of Ku(X), and use the quadric bundle structure on X̃ induced

by linear projection from L to identify K̃u(X) with the derived category of an associated pair
(W+,A+).

The result is motivated by a version of Conjecture 1.2 allowing singularities, which for
rational X asks for a crepant resolution of Ku(X) by a Calabi–Yau threefold, instead of a
derived equivalence with one (which is impossible when X is singular). Theorem 1.3 verifies a
case of this statement, or alternatively a case of Kuznetsov’s original rationality heuristics on

the resolution X̃, with two caveats. First, we do not know an example where the Brauer class
of A+ vanishes, so that X is rational; in fact, we expect that this class either always or never
vanishes (Remark 3.7). Second, even if the Brauer class of A+ vanishes, our construction

1To be precise, we use the term “crepant categorical resolution” for what is called a “weakly crepant

categorical resolution” in [Kuz08b].
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produces a non-projective Calabi–Yau threefold W+, in contrast to what is expected from
Conjecture 1.2.

To produce a sharper example, we specialize further to a situation where the quadric bundle

X̃ mentioned above admits a section. Our second main result is as follows.

Theorem 1.5. Let X → P5 be a double cover branched along a quartic hypersurface Y ⊂ P5.
Assume that Y is singular along a line L ⊂ P5 and that there exists a 3-plane P ⊂ P5

complementary to L which is tangent to Y along a smooth quadric surface.

(i) For general such Y , there is a crepant categorical resolution of singularities of Ku(X)
by Db(W++), where W++ is a projective Calabi–Yau threefold.

(ii) In the situation of (i), X is rational.

Theorems 1.3 and 1.5 give a procedure for connecting the CY3 category Ku(X) of a smooth
X first to a twisted geometric Calabi–Yau threefold (W+,A+), and then to a geometric
Calabi–Yau threefold W++, where each step proceeds by degenerating the CY3 category and
then taking a crepant resolution; we expect this to be useful for studying the category Ku(X)
and its moduli spaces of objects by deformation from the geometric case. There is a classical
geometric version of this procedure, the simplest example being a conifold transition, where
a Calabi–Yau threefold is degenerated and then crepantly resolved to obtain another; such
constructions have been widely studied in support of “Reid’s fantasy” [Rei87] that all Calabi–
Yau threefolds can be connected in this way. Theorem 1.3 can similarly be regarded as evidence
for the noncommutative version of Reid’s fantasy raised in [KP23].

Let us also note that Theorem 1.5 provides an analog for quartic double fivefolds of [Kuz10,
Theorem 5.2], which gives a crepant resolution of the Kuznetsov component of a nodal (nec-
essarily rational) cubic fourfold by the derived category of a K3 surface.

Remark 1.6 (Higher dimensions). Quartic double fivefolds are the first in a series of higher-
dimensional examples with similar properties. Namely, if X → P4m+1 is a double cover
branched along a quartic hypersurface, then by [Kuz19, Corollary 4.6] the category Ku(X)
is Calabi–Yau of dimension 2m + 1. We expect our arguments to also be useful for proving
analogs of Theorems 1.3 and 1.5 when m > 1.

Outline. Some basic facts about the geometry of quartic double fivefolds X arising from
quartics singular along a line are worked out in §2, after which Theorems 1.3 and 1.5 are
proven in §3 and §4, respectively.

Conventions. All functors are derived. In particular, for a morphism f : X → Y we write f∗

and f∗ for the derived pullback and pushforward, and for E,F ∈ Db(X) we write E ⊗ F for
their derived tensor product.
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2. Quartic double fivefolds singular along a line

In this section we analyze the geometry of a quartic double fivefold singular along a line.
Throughout, V is a 6-dimensional vector space and PV ∼= P5 is the associated projective
space of lines. Let U ⊂ V be a 2-dimensional subspace corresponding to a projective line
L ··= PU . Set V ··= V/U , choose a splitting V ∼= U ⊕ V , let P ⊂ PV be the corresponding
projective 3-space complementary to L, and fix a smooth quadric surface S ⊂ PV .

2.1. Linear projection from the line. Projection away from L induces a rational map

PV 99K PV , which is resolved on the blow up b : P̃V → PV along L. Write E ↪→ P̃V for the
exceptional divisor. This data fits into a diagram

E P̃V PV

L PV.

bE b

a

LetH be the hyperplane class on PV and h the hyperplane class on PV . Some useful standard
facts about the situation are as follows:

Lemma 2.1. Let F ··= (a∗OP̃V
(H))∨. Then

(i) F ∼= OPV ⊗ U ⊕OPV (−h);

(ii) a : P̃V → PV is isomorphic to the projective bundle PF → PV ;

(iii) h = H − E in Pic(P̃V ); and

(iv) the canonical divisor of P̃V is K
P̃V

= −6H + 3E = −3H − 3h.

2.2. Quartic fourfolds. Within the complete linear system |4H| of quartic fourfolds in PV ,
consider the linear systems

a ··= { Y ∈ |4H| : Y is singular along L } and

b ··= { Y ∈ a : Y ∩ P = 2S } ,

of codimensions 21 and 56, respectively, consisting of quartics that are singular along the
line L, and those which are furthermore tangent to the 3-space P along the quadric S. Let

Y ↪→ PV be a member of a, and let Ỹ ↪→ P̃V be the strict transform of Y along the blow

up b. Since L has multiplicity at least 2 in Y , Ỹ is a member of the complete linear system

|4H − 2E| = |2H + 2h| on P̃V . Moreover, the projection Ỹ → PV exhibits Ỹ as a conic
bundle in PF → PV corresponding to a section θ : OPV → Sym2(F∨) ⊗ OPV (2h). Every
such conic bundle arises in this way, and the ones corresponding to Y ∈ b are those whose
OPV (4h) component of θ is an equation for 2S ⊂ P ∼= PV .
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The following describes the singularities of Ỹ when it arises from a general member of a or

b. In the latter case, the surface S ↪→ Y may be viewed as a subscheme of Ỹ since S is disjoint
from L. Recall that an isolated singularity is called an ordinary double point or a node if it is
a hypersurface singularity and the exceptional divisor E of the blow up therein is a smooth
quadric with normal bundle OE(E) ∼= OE(−1).

Lemma 2.2. The strict transform Ỹ along the blow up b : P̃V → PV

(i) is smooth for general Y ∈ a, and

(ii) has only 18 nodes along S ↪→ Ỹ for general Y ∈ b.

Proof. For (i), if Y is a general member of a, then Ỹ is a general member of |2H + 2h|; since
H + h is ample, Bertini’s theorem implies Ỹ is smooth. For (ii), choose linear forms y1 and
y2 on PV which together cut out the 3-plane P . Then a quartic Y in the linear system b is
defined by an equation of the form

Y = V(β11y
2
1 + β12y1y2 + β22y

2
2 + α1y1 + α2y2 + q2)

where β11, β12, β22 ∈ H0(P,OP (2)), α1, α2 ∈ H0(P,OP (3)), and q is an equation of S in P ;
here, functions on P are viewed as functions on PV via the splitting V ∼= U ⊕ V . The base
points of b are contained in the line L and the quadric surface S, and since y1 and y2 span

the space of linear functions on L, the base points of the strict transform of b on P̃V are

contained in S. Therefore the singularities of Ỹ for general Y ∈ b are points along S at which
the above equation vanishes to order at least 2, and these are the points where both cubics
α1 and α2 vanish. It remains to observe that when these two cubics intersect the quadric q in

the projective 3-space P at 18 reduced points, the corresponding singularities on Ỹ are nodes:
indeed, this means that the linear terms of y1, y2, α1, α2, and q in formal local coordinates
are linearly independent, and so the tangent cone therein is a full rank quadric. □

2.3. Double quartic fivefolds. Let f : X → PV and f̃ : X̃ → P̃V be the double covers

branched along Y and Ỹ . Lemma 2.2 shows that X̃ is smooth for general Y ∈ a, and has only
18 nodes along the preimage of S for general Y ∈ b. In both cases, the canonical morphism

bX : X̃ → X resolves the singularities along L. Writing Z ··= b−1
X (L) for the exceptional divisor

and π ··= a ◦ f̃ : X̃ → PV , there is a commutative diagram

Z X̃ PV

L X.

i

bZ bX

π

Note that, for general Y in either a or b, the singularities of X are rational: those along L are
because Z → L is a quadric threefold fibration, as explained in Lemma 3.2; and the remaining
singularities are simply nodes.

To simplify notation, write H and h for the pullback under X̃ → P̃V of the corresponding

divisor classes. The essential point is that X̃ is a quadric surface bundle over P̃V :

Lemma 2.3. Let E ··= (π∗OX̃
(H))∨. Then

(i) E ∼= F ⊕OPV (h);

(ii) X̃ embeds into PE as a hypersurface of class 2H + 2h; and
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(iii) the canonical class of X̃ is K
X̃

= −2H − 2h.

Proof. For (i), compute using the projection formula and Lemma 2.1(iii):

π∗OX̃
(H) = a∗f̃∗f̃

∗O
P̃V

(H) = a∗
(
O

P̃V
(H)⊕O

P̃V
(−H + E)

)
= F∨ ⊕OPV (−h).

For (ii), note that X̃ → P̃V is a double cover of P2 branched along a conic Zariski-locally

over PV , so the canonical map X̃ → PE is an embedding as a quadric surface. Since the
relative hyperplane class of PE → PV is the pullback of H, and since Pic(PE) ∼= ZH ⊕ Zh,

the class of X̃ in PE is 2H + nh for some integer n. To determine n, consider the sequence

0 → OPE(−nh) → OPE(2H) → O
X̃
(2H) → 0.

Pushing forward to PV and computing as in (i) gives

0 → OPV (−nh) → Sym2(E∨) → Sym2(F∨)⊕F∨(−h) → 0.

Since Sym2(E∨) ∼= Sym2(F∨)⊕F∨(−h)⊕OPV (−2h) and, as F is a sum of line bundles, the
sequence necessarily splits and thus n = 2.

For (iii), use Lemma 2.1(iv) together with the description of X̃ as a double cover of P̃V
branched along a divisor of type 2H + 2h:

K
X̃

= f̃∗K
P̃V

+
1

2
(2H + 2h) = (−3H − 3h) + (H + h) = −2H − 2h. □

Let D ↪→ PV be the discriminant locus of the quadric surface bundle π : X̃ → PV : as
usual, this is the subscheme over which fibers are singular quadrics, or equivalently, the locus
over which the associated bilinear form has corank at least 1. When π is generically smooth,
D is a surface and, by [ABB14, Proposition 1.2.5], its singular locus consists of the subscheme
D0 over which the bilinear form furthermore has corank at least 2 together with the image of

the singular locus of X̃. In the situation at hand, D is as follows:

Lemma 2.4. For general quartics Y in either a or b, the discriminant locus D of π is a
surface of degree 8 with singular locus consisting of

(i) only 72 nodes along D0 for general Y ∈ a; and

(ii) only 18 additional nodes corresponding to those of X̃ for general Y ∈ b.

Proof. The fibers of π : X̃ → PV are double planes branched over the conic fibers of Ỹ → PV ,

so D is also the discriminant locus of the latter conic bundle. Since Ỹ is defined by a section
of Sym2(F∨) ⊗ OPV (2h), writing ci ··= ci(F∨ ⊗ OPV (h)), [HT84, Theorem 10] or [Ful98,
Example 14.4.11] apply to give identities

[D] = 2c1 and [D0] = 4 det

(
c2 c3
c0 c1

)
in the Chow ring of PV whenever D and D0 are of expected dimensions 2 and 0, respectively.
These have degrees 8 and 72, respectively, using

c(F∨ ⊗OPV (h)) = (1 + h)2(1 + 2h) = 1 + 4h+ 5h2 + 2h3.

For general Y in either a or b, Ỹ is generically smooth and so D is a surface of degree 8. Since

the vector bundle Sym2(F∨)⊗OPV (2h) defining Ỹ is globally generated, and since the vector
space underlying a is canonically identified with its space of sections, a Bertini-type argument
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as in [Bar80, Lemma 4] shows that the singular locus of D consists of nodes supported on the
0-dimensional locus D0, giving (i).

Similarly, since Sym2(F∨) ⊗ OPV (2h) is generated away from S ↪→ PV by its sections
corresponding to members of b, the Bertini argument also shows that, for general Y ∈ b,
D has only nodes along D0 away from S. Thus to prove (ii), it remains to show that D0 is
disjoint from S and that D has only nodes along S for general Y ∈ b. For this, and for later
use, note that for any Y ∈ b, a symmetric bilinear form defining the quadric surface bundle

π : X̃ → PV may be written with the notation of Lemma 2.2 as

A ··=
1

2


−2 0 0 0
0 2β11 β12 α1

0 β12 2β22 α2

0 α1 α2 2q2

 : E → E∨ ⊗OPV (2h) (2.1)

where the matrix is with respect to the decompositions

E ∼= OPV (h)⊕OPV ⊕OPV ⊕OPV (−h)

E∨ ⊗OPV (2h)
∼= OPV (h)⊕OPV (2h)⊕OPV (2h)⊕OPV (3h).

Therefore an equation for D in PV is given by

−4 det(A) = α2
2β11 − α1α2β12 + α2

1β22 − q2(4β11β22 − β2
12).

The singularities of D away from D0 lie in the image of the singular locus of X̃, which by
Lemma 2.2, is the subscheme V(α1, α2, q). This is disjoint from D0 since none of β11, β12, β22,
nor 4β11β22−β2

12 vanish there for general Y ∈ b. This moreover implies that the tangent cone
to D at points therein is a quadric defined by products of linear terms of α1, α2, and q, and
so, arguing as in Lemma 2.2, D has only nodes precisely when the hypersurfaces defined by
α1, α2, and q intersect transversally in PV , yielding (ii). □

Since PV is, of course, smooth, a node x ∈ X̃ must be contained in the nonsmooth locus
of the map π. So π(x) ∈ D and it is a singular point of D. Since the proof of Lemma 2.4(ii)

shows that, for general Y ∈ b, the singularities of D corresponding to those of X̃ lie away
from the corank 2 locus D0, this implies:

Corollary 2.5. For general Y ∈ b, each node of X̃ is the cone point of a corank 1 fiber of π.

2.4. Sections of the singular quadric surface bundles. Consider the singular quadric

surface bundles π : X̃ → PV arising from a general member Y of the linear system b. Since
the 3-plane P intersects the branch locus Y doubly along the quadric surface S, its preimage
along the double cover f : X → PV is reducible, and so is a union f−1(P ) = P+ ∪P− of two
components, each isomorphic to P . As P is disjoint from the line L, the P± may be identified

as subschemes of X̃, providing two sections

σ± : PV
∼−→ P± ↪→ X̃

to π; in particular, this implies that X̃ is rational. Moreover, upon examining the bilinear
form (2.1), σ± are seen to correspond to the line subbundles

N± ··= image
(
(±q, 0, 0, 1)t : OPV (−h) ↪→ E

)
.

The basic fact about the geometry of these sections is:
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Lemma 2.6. Each section σ± passes through every node of X̃, and are otherwise contained
in the smooth locus of π.

Proof. Lemma 2.2(ii) implies that the nodes of X̃ lie over Y ∩P , so σ± must pass through all
of them by construction. That σ± are otherwise contained in the smooth locus of π follows
from noting that N± ↪→ E does not intersect the kernel of the bilinear form (2.1) at points
where at least one of α1, α2, or q is nonvanishing. □

3. General situation: twisted geometric component

This section is concerned with the double quartic fivefolds that arise from a general quartic
fourfold singular along the line L. So fix a general member Y in the linear system a, and
continue with the notation in §2.

3.1. Crepant resolution of Ku(X). First we construct a crepant resolution of the Kuznetsov

component of X using the geometric resolution of singularities bX : X̃ → X. Recall that we
define the Kuznetsov component of a smooth prime Fano variety by the semiorthogonal de-
composition (1.1). This semiorthogonal decomposition still exists in many situations when
the Fano variety is singular, and in particular in our setting:

Lemma 3.1. There is a semiorthogonal decomposition

Db(X) = ⟨Ku(X),OX ,OX(H),OX(2H),OX(3H)⟩,
where Ku(X) ⊂ Db(X) is the full subcategory defined by

Ku(X) = {F ∈ Db(X) | Hom•(OX(iH), F ) = 0 for 0 ≤ i ≤ 3 } .
Proof. This is a special case of [KP17, Lemma 5.1], but for convenience we recall the proof in
our situation. Since X is a double cover of PV branched along a quartic,

H•(X,OX(mH)) = H•(PV,OPV (mH)⊕OPV ((m− 2)H))

for all integers m. Taking m = 0 shows that OX is an exceptional object; hence the same
applies to all of the line bundles OX(nH). Similarly, it is easy to see that the displayed coho-
mology group vanishes for −3 ≤ m ≤ −1, so the objects OX ,OX(H),OX(2H),OX(3H) are
semiorthogonal. Since Ku(X) is by definition the right orthogonal to the admissible subcate-
gory generated by these objects, the result follows. □

To construct a resolution of Ku(X), we will need a suitable semiorthogonal decomposition

of the exceptional divisor Z ⊂ X̃:

Lemma 3.2. There is a semiorthogonal decomposition

Db(Z) = ⟨b∗ZDb(L)⊗OZ(2Z), b∗ZD
b(L)⊗OZ(Z),D⟩

where D = ⟨b∗ZDb(L),Db(L,B′
0)⟩ for B′

0 the even parts of a sheaf of Clifford algebras on L.

Proof. The point is that bZ : Z → L itself is a quadric threefold fibration: This map factors

through E ∼= PV × L → L and Z → E is a double cover branched along Ỹ ∩ E, which is of
class 2H + 2h. Thus Z → L is fiberwise a double covering of P3 branched along a quadric
surface, and so, as in Lemma 2.3, is a quadric threefold fibration. The claimed semiorthogonal
decomposition now follows by applying Serre duality to the quadric bundle decomposition
[Kuz08a, Theorem 4.2] and observing that Z = H − h by Lemma 2.1(iii). □
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Now we can give the promised resolution of K̃u(X).

Lemma 3.3. There is a semiorthogonal decomposition

Db(X̃) = ⟨i∗b∗ZDb(L)⊗OZ(2Z), i∗b
∗
ZD

b(L)⊗OZ(Z),

K̃u(X),O
X̃
,O

X̃
(H),O

X̃
(2H),O

X̃
(3H)⟩,

(3.1)

where K̃u(X) is a crepant categorical resolution of singularities of Ku(X). More precisely,
writing Ku(X)perf for the subcategory of Ku(X) consisting of perfect complexes, pullback and

pushforward along bX : X̃ → X restrict to functors

b∗X : Ku(X)perf → K̃u(X) and bX∗ : K̃u(X) → Ku(X)

which are mutually left and right adjoint.

Proof. Apply [Kuz08b, Theorem 1] to the resolution of singularities bX : X̃ → X and the
decomposition of Db(Z) from Lemma 3.2. It is easy to see that the assumptions of this
theorem are satisfied, so that it gives a semiorthogonal decomposition

Db(X̃) = ⟨i∗b∗ZDb(L)⊗OZ(2Z), i∗b
∗
ZD

b(L)⊗OZ(Z), D̃⟩

where D̃ is a crepant categorical resolution of singularities of Db(X). In particular, b∗X fully

faithfully embeds the category of perfect complexes on X into D̃, so D̃ contains the objects
b∗XOX(mH) = O

X̃
(mH) for m = 0, 1, 2, 3, and they remain a semiorthogonal exceptional

collection. Therefore, we obtain a semiorthogonal decomposition

D̃ = ⟨K̃u(X),O
X̃
,O

X̃
(H),O

X̃
(2H),O

X̃
(3H)⟩,

where K̃u(X) is the right orthogonal to the subcategory of D̃ generated by the displayed line
bundles. Putting these decompositions together now gives the statement. □

3.2. Clifford algebra description of K̃u(X). Since π : X̃ → PV is a quadric surface fibra-
tion by Lemma 2.3, [Kuz08a, Theorem 4.2] gives a semiorthogonal decomposition

Db(X̃) = ⟨Db(PV ,B0), π
∗Db(PV )⊗O

X̃
, π∗Db(PV )⊗O

X̃
(H)⟩, (3.2)

where B0 is the sheaf on PV of even Clifford algebras associated with π : X̃ → PV . This
subsection aims to prove:

Proposition 3.4. There is an equivalence of categories K̃u(X) ≃ Db(PV ,B0).

We shall compare the semiorthogonal decomposition from Lemma 3.3 with that of (3.2)
via a sequence of mutations. Recall that given a semiorthogonal decomposition

T = ⟨A1,A2, . . . ,An⟩

of a triangulated category with admissible components, there are functors LAi ,RAj : T → T ,
for 1 ≤ i ≤ n− 1 and 2 ≤ j ≤ n, which give semiorthogonal decompositions of T of the form

⟨A1, . . . ,Ai−1,LAi(Ai+1),Ai, . . . ,An⟩ and ⟨A1, . . . ,Aj ,RAj (Aj−1),Aj+1, . . . ,An⟩,

called the left mutation through Ai and right mutation through Aj , respectively. The following
summarizes some basic properties of these functors that we will freely use below; see [Bon89,
BK89, Kuz10] for details.
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Lemma 3.5. Let T = ⟨A1,A2, . . . ,An⟩ be a semiorthogonal decomposition with admissible
components.

(i) If Ak and Ak+1 are completely orthogonal, meaning Hom•(E,F ) = 0 for E ∈ Ak and
F ∈ Ak+1, then

LAk
(Ak+1) = Ak+1 and RAk+1

(Ak) = Ak.

(ii) If Ak is generated by an exceptional object E, then the associated mutation functors
LE and RE are given by

LE(F ) = Cone(Hom•(E,F )⊗ E → F ) and RE(F ) = Cone(F → Hom•(F,E)∨ ⊗ E)[−1].

(iii) If T = Db(Y ) for a smooth projective variety Y , then

L⟨A1,...,An−1⟩(An) = An ⊗ ωY and R⟨A2,...,An⟩(A1) = A1 ⊗ ω−1
Y .

We now proceed with the proof of Proposition 3.4. Using the standard Beilinson decompo-
sition for the derived category of projective space, the categories to the right of Db(PV ,B0)
in (3.2) are generated by the exceptional collection

⟨O
X̃
(−h),O

X̃
,O

X̃
(h),O

X̃
(2h),O

X̃
(H),O

X̃
(H + h),O

X̃
(H + 2h),O

X̃
(H + 3h)⟩. 0

Similarly, after mutating K̃u(X) to the far left of the decomposition from Lemma 3.3, the
categories to its right are generated by the exceptional collection

⟨i∗OZ(2Z−2H), i∗OZ(2Z−H), i∗OZ(Z), i∗OZ(Z+H),O
X̃
,O

X̃
(H),O

X̃
(2H),O

X̃
(3H)⟩. 8

It suffices to find a sequence of mutations which takes the exceptional collection 0 to 8 . We
explain the steps below; see also Figure 1 for a summary.

Step 1. Mutate the subcategory ⟨O
X̃
(H + 2h),O

X̃
(H + 3h)⟩ on the right end of 0 to the

far left. Left mutating D(PV ,B0) through the resulting category ⟨O
X̃
(−H),O

X̃
(−H + h)⟩

results in the decomposition with exceptional objects

⟨O
X̃
(−H),O

X̃
(−H + h),O

X̃
(−h),O

X̃
,O

X̃
(h),O

X̃
(2h),O

X̃
(H),O

X̃
(H + h)⟩. 1

Step 2. The pairs ⟨O
X̃
(−H+h),O

X̃
(−h)⟩ and ⟨O

X̃
(2h),O

X̃
(H)⟩ are completely orthogonal.

Indeed, by Lemma 2.3 we have

π∗OX̃
(H − 2h) ∼= E∨(−2h) ∼= OPV (−h)⊕OPV (−2h)⊕2 ⊕OPV (−3h),

and hence H•(O
X̃
(H − 2h)) = 0. Simultaneously transposing these pairs yield the collection

⟨O
X̃
(−H),O

X̃
(−h),O

X̃
(−H + h),O

X̃
,O

X̃
(h),O

X̃
(H),O

X̃
(2h),O

X̃
(H + h)⟩. 2

Step 3. Simultaneously perform right mutations in the pairs

⟨O
X̃
(−H),O

X̃
(−h)⟩ and ⟨O

X̃
(−H + h),O

X̃
⟩,

and left mutations in the pairs

⟨O
X̃
(h),O

X̃
(H)⟩ and ⟨O

X̃
(2h),O

X̃
(H + h)⟩.

For each pair, the space of morphisms from the left object to the right is H•(O
X̃
(H−h)) = k[0],

which can be computed as in the previous step. The nonzero section corresponds to the
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0 (0,−1) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (1, 3)

1 (−1, 0) (−1, 1) (0,−1) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1)

2 (−1, 0) (0,−1) (−1, 1) (0, 0) (0, 1) (1, 0) (0, 2) (1, 1)

3 (0,−1) i∗(0,−1) (0, 0) i∗(0, 0) i∗(1, 0) (0, 1) i∗(1, 1) (0, 2)

4 i∗(0,−1) (0, 0) i∗(0, 0) i∗(1, 0) (0, 1) i∗(1, 1) (0, 2) (2, 1)

5 i∗(0,−1) i∗(0, 0) (−1, 1) i∗(1, 0) (0, 1) (1, 1) i∗(1, 1) (2, 1)

6 i∗(0,−1) i∗(0, 0) i∗(1, 0) (−1, 1) (0, 1) (1, 1) (2, 1) i∗(1, 1)

7 i∗(−1,−1) i∗(0,−1) i∗(0, 0) i∗(1, 0) (−1, 1) (0, 1) (1, 1) (2, 1)

8 i∗(0,−2) i∗(1,−2) i∗(1,−1) i∗(2,−1) (0, 0) (1, 0) (2, 0) (3, 0)

Figure 1. This diagram summarizes the sequence of mutations we perform to trans-

form the exceptional collection coming from (3.2) to the exceptional collection com-

ing from the decomposition of Lemma 3.3. The symbol (a, b) represents the object

OX̃(aH + bh), and i∗(a, b) represents the object i∗OZ(aH + bh). An arrow indicates

that the next row is obtained by mutating the object at the tail of the arrow through

the object at the head of the arrow. Arrows that point off the sides indicate the ap-

plication of Serre duality to flip underlined objects to the other side.

equation of Z = H − h. Thus each mutation gives the structure sheaf of Z, possibly with a
twist; for example,

LO
X̃
(h)(OX̃

(H)) ··= Cone(Hom•(O
X̃
(h),O

X̃
(H))⊗O

X̃
(h) → O

X̃
(H)) ∼= i∗OZ(H).

Similarly computing for the others finally yields the collection

⟨O
X̃
(−h), i∗OZ(−h),O

X̃
, i∗OZ , i∗OZ(H),O

X̃
(h), i∗OZ(H + h),O

X̃
(2h)⟩. 3

Step 4. Right mutate D(PV ,B0) through O
X̃
(−h), and then mutate O

X̃
(−h) to the far right

side, resulting in

⟨i∗OZ(−h),O
X̃
, i∗OZ , i∗OZ(H),O

X̃
(h), i∗OZ(H + h),O

X̃
(2h),O

X̃
(2H + h)⟩. 4

Step 5. Simultaneously right mutate O
X̃

through i∗OZ , and left mutate O
X̃
(2h) through

i∗OZ(H + h). For the right mutation, we have

Hom•(O
X̃
, i∗OZ) = H•(OZ) = H•(OE ⊕OE(−H − h)) = k[0]

since Z → E ∼= PV × L is a double cover branched along a divisor of class 2H + 2h, as
discussed in Lemma 3.2. Thus the only morphism is the canonical quotient map, so

Ri∗OZ
(O

X̃
) = O

X̃
(−Z) = O

X̃
(−H + h),
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using Lemma 2.1(iii). Likewise, for the left mutation, by Grothendieck duality for i : Z → X̃,

Hom•(i∗OZ(H + h),O
X̃
(2h)) = Hom•(OZ(H + h),O

X̃
(Z + 2h)[−1])

= H•(OZ [−1])

= k[−1].

This map corresponds to the exact sequence

0 → O
X̃
(2h) → O

X̃
(H + h) → i∗OZ(H + h) → 0,

and therefore
Li∗OZ(H+h)(OX̃

(2h)) = O
X̃
(H + h).

In total, the exceptional collection has now become

⟨i∗OZ(−h), i∗OZ ,OX̃
(−H+h), i∗OZ(H),O

X̃
(h),O

X̃
(H+h), i∗OZ(H+h),O

X̃
(2H+h)⟩. 5

Step 6. A computation as in the previous step shows that the pairs ⟨O
X̃
(−H+h), i∗OZ(H)⟩

and ⟨i∗OZ(H + h),O
X̃
(2H + h)⟩ are completely orthogonal. Transposing the objects in each

pair results in the collection

⟨i∗OZ(−h), i∗OZ , i∗OZ(H),O
X̃
(−H+h),O

X̃
(h),O

X̃
(H+h),O

X̃
(2H+h), i∗OZ(H+h)⟩. 6

Step 7. Mutate i∗OZ(H+h) to the far left, and left mutate Db(PV ,B0) through the resulting
object i∗OZ(−H − h). This yields the collection

⟨i∗OZ(−H−h), i∗OZ(−h), i∗OZ , i∗OZ(H),O
X̃
(−H+h),O

X̃
(h),O

X̃
(H+h),O

X̃
(2H+h)⟩. 7

Step 8. Finally, twist the collection 7 by O
X̃
(H−h). The resulting collection is exactly that

appearing in 8 above. This completes the proof of Proposition 3.4. □

3.3. A twisted Calabi–Yau threefold. Combining Lemma 3.3 and Proposition 3.4 shows
that Ku(X) admits a crepant resolution by the category Db(PV ,B0). Thus, to prove part (i)
of Theorem 1.3, it suffices to identify Db(PV ,B0) with the twisted derived category of a non-
projective Calabi–Yau threefold. Below, we show how this as well as the rationality criterion
in part (ii) of Theorem 1.3 follow from the results of [Kuz14a], modulo the non-projectivity
of the threefold which we show in §3.4.

It will be convenient to work more generally and to consider any quadric surface bundle
Q → PV of class 2H + 2h in PE with smooth total space and discriminant locus D an octic
surface with only 72 nodes as singularities, as in Lemma 2.4(i); call any such quadric surface
bundle good. Writing B0 for its sheaf of even Clifford algebras on PV , we have:

Lemma 3.6. If Q → PV is good, then there is an equivalence of categories

Db(PV ,B0) ≃ Db(W+,A+)

where W+ is a 3-dimensional Calabi–Yau algebraic space with an Azumaya algebra A+. More-
over, the Brauer class of A+ is trivial if and only if Q → PV has a rational section.

Proof. Let µ : M → PV be the relative Fano scheme of lines of Q → PV . The fiber of µ
over a point of PV \D is P1 ⊔ P1, corresponding to the two rulings on the smooth quadric
surface fiber of Q → PV , whereas over a point of D, the fiber is a P1 with multiplicity 2.
Thus the Stein factorization of µ gives a double covering τ : W → PV branched along D.
When Q → PV is good, then W has only 72 nodes as singularities, exactly over those of D.
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Now [Kuz14a, Section 4] gives a diagram

M M+

W W+

flip

where M+ is an algebraic space obtained as a flip of M , and W+ → W is a small resolution
of singularities. Since D is an octic, W and W+ have trivial canonical bundles. By [Kuz14a,
Propositions 4.4 and 5.5], the morphism M+ → W+ is a P1-bundle with Brauer class repre-
sented by an explicit Azumaya algebra A+ on W+. The calculations on [Kuz14a, p.670] then
gives the equivalence of categories

Db(PV ,B0) ≃ Db(W+,A+).

The Brauer class of A+ vanishes if and only if the P1-bundle M+ → W+ admits a rational
section. Upon undoing the birational modifications, this is equivalent to M → W admitting a
rational section. Since a rational section of M → W gives one line in each of the two rulings on
the generic fiber of Q → PV , taking their intersection gives a rational section of the quadric
surface bundle Q → PV . Conversely, a rational section of Q → PV distinguishes the unique
pair of lines passing through this point, and thus gives a rational section of M → W . □

Remark 3.7. We do not know if any good quadric bundle Q → PV admits a rational

section; in particular, we do not know if any of the bundles X̃ → PV arising from quartic
double fivefolds with Y ∈ a are rational. However, it seems reasonable to expect the following
dichotomy: either all or none of these quadric bundles admit a rational section. Indeed, the
exponential sequence shows that the Brauer group of a strict (meaning that hi(O) = 0 for
0 < i < n) complex Calabi–Yau n-fold is nothing but the torsion in degree 3 cohomology
when n ≥ 3, and hence a topological invariant. Thus, if it were possible to construct the
pair (W+,A+) in families, then it would follow that the Brauer class of A+ either vanishes
everywhere or nowhere, and by Lemma 3.6 the vanishing is equivalent to the existence of
rational section of Q → PV . This argument is not complete, because a priori it is not clear
that the choice of the small resolution of nodal singularities in the construction of (W+,A+)
can be made simultaneously in a family.

3.4. Non-projectivity. To complete the proof of Theorem 1.3, we just need to show that
the Calabi–Yau algebraic space W+ appearing in §3.3 is not projective. We show that it has
no ample divisors via the following non-projectivity criterion:

Lemma 3.8. Let T be a projective threefold with only nodal singularities. If δ ··= b4(T )−b2(T )
vanishes, then no small resolution of T can be projective.

Proof. Let T+ → T be any small resolution of T . Cohomology of the pair T+ with the union
of its exceptional curves C1, . . . , Cn gives a sequence

0 → H2(T ) → H2(T+) →
⊕n

i=1
H2(Ci) → H3(T ) → H3(T+) → 0

and an isomorphism H4(T ) ∼= H4(T+). Thus δ = 0 if and only if any class in H2(T+) restricts
trivially to H2(Ci) for all i = 1, . . . , n. In particular, each of the curves Ci are numerically
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trivial in T+, and so there are no ample divisors. See [Cle83, §1], [Wer87, pp.5–6 and Chapter
III], and [Add09, p.43] for more. □

The integer δ is called the defect of the nodal threefold. In the case T is a double solid,
Clemens provides a formula in [Cle83, (3.17)] for δ in terms of the number of independent
conditions on certain polynomials imposed by the position of the nodes; see also [Cyn01] for
a generalization and an algebraic proof.

Lemma 3.9. If T is a double cover of P3 branched along a nodal surface B of degree 2d,
then, writing I for the ideal sheaf of the nodes of B viewed as a subscheme of P3,

δ = dimH1(P3, I ⊗ OP3(3d− 4)).

In the situation at hand, the nodes of the discriminant surface parameterize points where a
bilinear form has corank at least 2, so its ideal sheaf in PV is locally generated by the minors
of a symmetric matrix. Such an ideal can be resolved as follows:

Lemma 3.10. Let φ : V∨ → V ⊗L be a symmetric morphism between locally free modules of
rank r on a locally Noetherian scheme, where L is a line bundle. Then there is a complex

0 → L∨,⊗2 ⊗ ∧2V∨ → L∨ ⊗ (V∨ ⊗ V)0 → Sym2(V) → I ⊗ L⊗r−1 ⊗ det(V)⊗2 → 0

where (V∨⊗V)0 ··= ker(ev : V∨⊗V → OS) and I is the sheaf of ideals locally generated by the
size r − 1 minors of φ. If I furthermore has its maximal depth 3, then the complex is exact.

Proof. Up to twisting by a power of L, the first three terms essentially comprise of a generalized
Eagon–Northcott complex associated with φ : V∨ → V ⊗L, see [Laz04, (EN2) on p.323]. The
point here is to identify the cokernel on the right, and this is done locally by [Józ78, Theorem
3.1] and [GT77]. Therefore it remains to globalize Józefiak’s description of the rightmost
differential: View the map ∧r−1φ as a bilinear form

∧r−1V∨ ⊗ ∧r−1V∨ → L⊗r−1.

Locally, this is given by a matrix consisting of size r−1 minors of φ, so this map is symmetric,
and has image the twisted ideal sheaf I ⊗L⊗r−1. Upon identifying ∧r−1V∨ with V ⊗ det(V∨)
via the isomorphism induced by wedge products, this gives a surjective map

Sym2(V)⊗ det(V∨)⊗2 → I ⊗ L⊗r−1.

Twisting by det(V)⊗2 gives the desired map. □

Proposition 3.11. No small resolution of the double cover τ : W → PV is projective.

Proof. Let Q → PV be a good quadric bundle of class 2H + 2h in PE with discriminant D.
The ideal sheaf I of the nodes of D, viewed as a subscheme of PV , is locally generated by
the size 3 minors of the symmetric morphism E → E∨⊗OPV (2h) associated with the bilinear

form defining Q. Since I defines a set of reduced points in PV , it has depth 3, so Lemma 3.10
provides a resolution of I ⊗ OPV (8h) of the form

0 → O(−3)2 ⊕O(−2)2 ⊕O(−1)2 → O(−2)⊕O(−1)4 ⊕O5 ⊕O(1)4 ⊕O(2)

→ O⊕O(1)2 ⊕O(2)4 ⊕O(3)2 ⊕O(4) → I ⊗O(8) → 0,
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where we abbreviateOPV (kh)
⊕r toO(k)r for k, r ∈ Z. Since none of the terms in the resolution

have any higher cohomology, H1(PV , I ⊗OPV (8h)) = 0, so Lemma 3.9 shows that the defect
of W vanishes. Lemma 3.8 then applies to give the result. □

4. Special rational examples

Specialize further and consider quartic double fivefolds arising from quartics that are singu-
lar along the line L, and which are tangent to the complementary 3-plane P along the smooth
quadric surface S. Such quartic double fivefolds are rational since, as observed in §2.4, P
gives rise to a section of the associated quadric surface bundle. In this section, we construct a
further crepant resolution of the Kuznetsov component of such fivefolds, and show that, this
time, it is equivalent to a geometric Calabi–Yau 3-category. Note that Lemma 3.1 holds for a
double cover X → P5 branched along any quartic hypersurface, regardless of the singularities,
so Ku(X) is indeed still defined in this more singular setting.

Throughout, fix a general member Y of the linear system b, and continue with the notation
of §2.

4.1. Projection from a section. As in §2.4, the quadric surface bundle π : X̃ → PV admits

two distinguished sections. Fix one of them, call it σ : PV → X̃, and let N ⊂ E be the
corresponding line subbundle. Relative linear projection centered along PN defines rational

maps X̃ 99K PE and PE 99K PE , the former birational, which are resolved on the blow ups

X̂ and P̂E along PN . These maps fit into a commutative diagram

Z ′ X̂ P̂E PE

PN X̃ PE PV

i′

b̂
X̃ b̂

â

π̄

where i′ : Z ′ ↪→ X̂ is the exceptional divisor of b̂
X̃
. Let â

X̂
: X̂ → PE denote the birational

map given by the restriction of â to X̂.
To describe the basic geometry of the situation, abuse notation and write H and h for the

hyperplane classes from PV and PV , respectively, pulled back to P̂E . Let ξ be the relative

hyperplane class of π̄ : PE → PV , and write π̂ ··= π̄ ◦ â : X̂ → PV .

Lemma 4.1. Let G ··= (â∗OP̂E(H))∨. Then

(i) G fits into a short exact sequence 0 → π̄∗N → G → OPE(−ξ) → 0;

(ii) P̂E → PE is isomorphic to the projective bundle PG → PE;
(iii) the class of X̂ in PG is H + ξ + 2h; and

(iv) ξ = H − Z ′ and K
X̂

= −H − ξ − 2h in Pic(X̂).

Proof. Items (i) and (ii) are relative versions of the corresponding parts from Lemma 2.1, and
are standard. Let E′ be the exceptional divisor of the blow up PG → PE . Then ξ = H − E′

as divisor classes on PG. Since the 3-plane PN lying at the center of the blow up generically

has multiplicity 1 in X̃, the class of X̂ in PG is 2H +2h−E′ = H + ξ+2h by Lemma 2.3(ii),
yielding (iii). From this, (iv) is a straightforward computation. □
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The projection formula along â gives a canonical isomorphism

H0(PG,OPG(H + ξ + 2h)) ∼= H0(PE ,G∨(ξ + 2h)).

Thus an equation of X̂ in PG induces a canonical section w : OPE → G∨(ξ+2h) which vanishes

on the subscheme W++ over which â
X̂
: X̂ → PE is not an isomorphism. The scheme W++ in

fact admits a useful modular interpretation:

Lemma 4.2. The scheme W++ canonically embeds into the relative Fano scheme of lines of

π : X̃ → PV as the subscheme of those lines incident with the section σ.

Proof. The modular description of projective bundles identifies PE as the subscheme in the
relative Fano scheme of lines of PE → PV parameterizing lines incident with the section σ,
and such that â : PG → PE is the universal family. Since W++ may be characterized as the

subscheme of PE over which the entire fiber of â is contained in X̂, the result follows. □

This description allows us to determine the dimension of W++, and thereby identify the

birational morphism â
X̂
: X̂ → PE with what it naturally should be:

Lemma 4.3. The morphism â
X̂
: X̂ → PE is isomorphic to the blow up along W++.

Proof. Observe that W++ is of its expected dimension 3: Lemma 4.2 together with Lemma 2.6
implies that W++ → PV is finite of degree 2 away from the singularities of the discriminant
surface D, and otherwise has 1-dimensional fibers. The ideal sheaf I of W++ in PE therefore
admits a Koszul resolution

0 → OPE
w−→ G∨(ξ + 2h) → I ⊗ det(G∨(ξ + 2h)) → 0.

The blow up of PV along W++ is canonically isomorphic to the Proj of the Rees algebra
associated with the twisted ideal sheaf on the right. This sequence then embeds the blow up

into PG as the relative hyperplane corresponding to the section w. But this is precisely X̃ by
the construction of the section w, yielding the result. □

Remark 4.4. The construction of W++ → PV from the quadric surface bundle π : X̃ → PV
and the section σ might be viewed as a singular variant of hyperbolic reduction: Typically,
this is a construction that takes a flat quadric bundle equipped with a smooth section, and
produces a quadric bundle of dimension two less whose homological properties are closely
related to those of the original quadric bundle. See, for example, [ABB14, §1.4], [KS18, §2.3],
[Kuz22], and [Xie23, §4].

4.2. Conifold transition. Let τ : W → PV be, as in §3.3, the double cover branched along
the discriminant surface D. When Y is a general member of b, W has 90 nodes by Lemma
2.4(ii): 72 corresponding to the corank 2 fibers of π, and an additional 18 corresponding to

those of X̃. Construct a small resolution of W in two steps. Begin with the small resolution
W+ → W of the 72 nodes over D0 where the M+ in Lemma 3.6 is obtained by flipping

the planes in M parameterizing lines in the planes of π−1(D0) ↪→ X̃ not incident with the
section σ. Combined with Lemma 2.6, this ensures that W++, embedded in M via Lemma
4.2, is disjoint from indeterminancy locus of the birational map M 99K M+, providing an
embedding W++ ↪→ M+. Next, composing with M+ → W+ provides a morphism W++ → W+.
This resolves the remaining nodes:
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Lemma 4.5. The morphism W++ → W+ is a small resolution of singularities.

Proof. Lemma 4.2 implies that W++ → W+ is an isomorphism away from the nodes of D.
Over a node t ∈ D0, the arguments of [Kuz14a, §4] identify the map M+ → W+ over t
with the projection of the Hirzebruch surface F1 → P1. Since the section σ passes through a
smooth point of π−1(t) by Lemma 2.6, the embedding W++ ↪→ M+ is identified over t as the
embedding of a non-exceptional section, and so W++ → W+ is an isomorphism over t.

Consider now a node t ∈ D lying under a node x ∈ X̃. Lemmas 4.2 and 2.6 together with
Corollary 2.5 imply that the fiber of W++ → W+ above t is the smooth conic at the base of
the quadric cone π−1(t), so it remains to see that the total space of W++ is smooth above t.
The proof of Lemma 2.4(ii) implies that there exists étale coordinates (x0, x1, x2) centered at

t ∈ PV such that X̃ → PV along with its section σ is, locally around t, pulled back from the
quadric surface bundle in A3 ×P3 defined by

−y20 + β11y
2
1 + β12y1y2 + β22y

2
2 + (x1y1 + x2y2 + x20y3)y3 = 0

with section (x0 : 0 : 0 : 1); here, β11, β12, β22 ∈ Γ(A3,OA3) are such that the binary quadratic
form β11y

2
1 + β12y1y2 + β22y

2
2 has rank 2 in a neighbourhood of 0 ∈ A3.

Make the change in projective coordinates y0 7→ y0 + x0y3 to simplify the section to (0 : 0 :
0 : 1). The equation of the quadric surface bundle then becomes

−y20 + β11y
2
1 + β12y1y2 + β22y

2
2 + (x0y0 + x1y1 + x2y2)y3 = 0.

Projection away from the section (0 : 0 : 0 : 1) has the effect of eliminating the coordinate
y3, and a standard computation shows that W++ is, locally around t, pulled back from the
complete intersection in A3 ×P2 given by

−y20 + β11y
2
1 + β12y1y2 + β22y

2
2 = x0y0 + x1y1 + x2y2 = 0.

A direct computation with the Jacobian criterion now implies that the points above the origin
of A3 are smooth. This implies that W++ is smooth above t, completing the proof. □

Combined with Lemma 4.3, this implies that X̂ is smooth, and so:

Corollary 4.6. The morphism b̂
X̃
: X̂ → X̃ is a resolution of singularities.

To finish the present discussion, consider the exceptional divisor i′ : Z ′ ↪→ X̂ of the blow
up b̂

X̃
. Write π̂Z′ ··= π̂ ◦ i′ : Z ′ → PV . The following shows that the structure sheaf OZ′ is

a relatively exceptional object over PV , and that the conormal sheaf OZ′(Z ′) has vanishing
cohomology over PV :

Lemma 4.7. π̂Z′,∗OZ′ = OPV [0] and π̂Z′,∗OZ′(Z ′) = 0 in Db(PV ).

Proof. Write the ideal sheaf sequence of Z ′ in X̂ using Lemma 4.1(iv) as

0 → O
X̂
(−H + ξ) → O

X̂
→ i′∗OZ′ → 0.

A straightforward computation using the ideal sheaf sequence of X̂ in PG together with the
facts of Lemma 4.1 shows that (π̄ ◦ â

X̂
)∗OX̂

(−H + ξ) = 0, and so

π̂Z′,∗OZ′ ∼= (π̄ ◦ â
X̂
◦ i′)∗OZ′ ∼= (π̄ ◦ â

X̂
)∗OX̂

∼= π̂∗OX̂
∼= OPV [0].



18 RAYMOND CHENG, ALEXANDER PERRY, AND XIAOLEI ZHAO

For the second claim, consider the sequence

0 → O
X̂

→ O
X̂
(H − ξ) → i′∗OZ′(Z ′) → 0

obtained by twisting by Z ′ = H − ξ the ideal sheaf sequence of Z ′ in X̂. Again, using the

ideal sheaf sequence of X̂ in PG together with the facts of Lemma 4.1, a straightforward
computation shows that (π̄ ◦ â

X̂
)∗OX̂

(H − ξ) ∼= OPV [0]. Since also (π̄ ◦ â
X̂
)∗OX̂

∼= OPV [0],
we find

π̂Z′,∗OZ′(Z ′) = (π̄ ◦ â
X̂
◦ i′)∗OZ′(Z ′) = 0. □

4.3. Geometric Kuznetsov component. The geometric situation considered so far in this
section is summarized by the commutative diagram

Z ′ X̂ PG|W++

PN X̃ PE W++

PV W W+

i′

b̂
X̃

π̂

â
X̂

π π̄

j

σ
∼= τ

where, notably, X̂ is identified as a blow up of schemes over PV in two different ways.
These two descriptions as blow ups over PV distinguish two Db(PV )-linear semiorthogonal

decompositions of Db(X̂), where linearity means that each semiorthogonal component is stable

under tensor products with objects in the image of π̂∗ : Db(PV ) → Db(X̂). They are:

Lemma 4.8. There are Db(PV )-linear semiorthogonal decompositions

Db(X̂) =
〈
â∗
X̂
j∗D

b(W++), π̂∗Db(PV )⊗O
X̂
, π̂∗Db(PV )⊗O

X̂
(ξ), π̂∗Db(PV )⊗O

X̂
(2ξ)

〉
=

〈
π̂∗Db(PV )⊗ i′∗OZ′(Z ′), K̂u(X), π̂∗Db(PV )⊗O

X̂
, π̂∗Db(PV )⊗O

X̂
(H)⟩

where K̂u(X) is a crepant categorical resolution of singularities of Ku(X) and K̃u(X).

Proof. The first semiorthogonal decomposition arises from the blow up and projective bundle

formulas upon identifying â
X̂
: X̂ → PE as the blow up along W++ via Lemma 4.3.

For the second decomposition, we begin by noting that some of the arguments from §3
go through in the more singular setting we are considering now. First, examining the argu-

ments of [Kuz08b, §4] shows that we may still define a subcategory K̃u(X) ⊂ Db(X̃) by the
semiorthogonal decomposition (3.1) of Lemma 3.3. It will no longer be a crepant categorical

resolution, since X̃ is singular, but pullback and pushforward along bX : X̃ → X still restrict
to functors

b∗X : Ku(X)perf → K̃u(X) and bX∗ : K̃u(X) → Ku(X)

which are mutually left and right adjoint. Second, Proposition 3.4 holds with verbatim proof,

so that there is an equivalence K̃u(X) ≃ Db(PV ,B0).

Now apply [Kuz08b, Theorem 1] with the resolution of singularities b̂
X̂
: X̂ → X̃ from

Corollary 4.6. A suitable semiorthogonal decomposition of Db(Z ′) is provided by Lemma 4.7,
which implies that there is a Db(PV )-linear decomposition

Db(Z ′) = ⟨π̂∗
Z′Db(PV )⊗OZ′(Z ′),D′⟩
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where D′ is the left orthogonal to π̂∗
Z′Db(PV ) ⊗ OZ′(Z ′), and contains π̂∗

Z′Db(PV ) ⊗ OZ′ .
Arguing as in Lemma 3.3 and using the decomposition (3.2) now gives the second promised

semiorthogonal decomposition of Db(X̂) and the fact that K̂u(X) is a crepant categorical
resolution of Db(PV ,B0). By the statements from the previous paragraph, this implies that

K̂u(X) is also a crepant categorical resolution of Ku(X) and K̃u(X). □

To identify the crepant categorical resolution K̂u(X) with the geometric Calabi–Yau cate-
gory Db(W++), we will use a mutation argument to relate the semiorthogonal decompositions
of Lemma 4.8. For this purpose, we will make use of the following facts about mutation
functors when working relatively to a base.

Lemma 4.9. Let f : Y → B be a morphism of smooth proper varieties, and let

Db(Y ) = ⟨A1, . . . ,An⟩

be a B-linear semiorthogonal decomposition with admissible components.

(i) The left and right mutation functors throught any Ak are B-linear, i.e. commute with
tensoring by pullbacks of objects from Db(B).

(ii) If Ak is generated by a relatively exceptional object E over B, i.e. f∗HomY (E,E) ≃ OB

(where HomY (−,−) is the derived sheaf Hom on Y ) and Ak is the image of the fully
faithful functor f∗(−) ⊗ E : Db(B) → Db(Y ), then the associated mutation functors
are given by

Lf∗Db(B)⊗E(F ) = Cone((f∗f∗Hom(E,F ))⊗ E → F ),

Rf∗Db(B)⊗E(F ) = Cone(F → (f∗f∗Hom(F,E))∨ ⊗ E)[−1].

(iii) We have

L⟨A1,...,An−1⟩(An) = An ⊗ ωY/B and R⟨A2,...,An⟩(A1) = A1 ⊗ ω−1
Y/B.

Proof. These statements follow easily from the definitions, and in the cases of (i) and (iii) are
analogous to their absolute versions in Lemma 3.5. For example, let us prove the first claim
of (i). If α : Ak → Db(Y ) is the inclusion functor, then the left mutation functor is given by

LAk
(F ) = Cone(αα!(F ) → F ).

Since the right adjoint to the functor f∗(−) ⊗ E is f∗(HomY (E,−)) : Db(Y ) → Db(B), the
claimed formula for Lf∗Db(B)⊗E follows. □

The following result completes the proof of Theorem 1.5.

Proposition 4.10. There is a PV -linear equivalence of categories K̂u(X) ≃ Db(W++).

Proof. The following argument is similar to [Xie23, Theorem 4.2]. As in Proposition 3.4, the
equivalence is obtained by comparing the two semiorthogonal decompositions of Lemma 4.8,
starting from

Db(X̂) =
〈
π̂∗Db(PV )⊗ i′∗OZ′(Z ′), K̂u(X), π̂∗Db(PV )⊗O

X̂
, π̂∗Db(PV )⊗O

X̂
(H)⟩.

Step 1. Mutate the first component to the far right. Note that by Lemma 4.1 we have
−K

X̂
= 2H − Z ′ + 2h, and that H = h on the section PN and hence also on Z ′. Thus the
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result of the mutation is

Db(X̂) =
〈
K̂u(X), π̂∗Db(PV )⊗O

X̂
, π̂∗Db(PV )⊗O

X̂
(H), π̂∗Db(PV )⊗ i′∗OZ′⟩.

Step 2. Right mutate π̂∗Db(PV )⊗O
X̂
(H) through π̂∗Db(PV )⊗ i′∗OZ′ . By the PV -linearity

of the mutation functor, it suffices to understand the result for O
X̂
(H). As noted above,

H = h on Z ′, and thus by Lemma 4.7 we have

π̂∗HomX̂
(O

X̂
(H), i′∗OZ′) ∼= π̂∗i

′
∗OZ′(−h) ∼= OPV (−h).

Using the description of the right mutation functor in Lemma 4.9 and the equality ξ = H−Z ′

from Lemma 4.1(iv), we find that the result of the mutation is

Db(X̂) =
〈
K̂u(X), π̂∗Db(PV )⊗O

X̂
, π̂∗Db(PV )⊗ i′∗OZ′ , π̂∗Db(PV )⊗O

X̂
(ξ)⟩.

Step 3. Left mutate π̂∗Db(PV )⊗ i′∗OZ′ through π̂∗Db(PV )⊗O
X̂
. Similarly to the previous

step, the result is

Db(X̂) =
〈
K̂u(X), π̂∗Db(PV )⊗O

X̂
(−Z ′), π̂∗Db(PV )⊗O

X̂
, π̂∗Db(PV )⊗O

X̂
(ξ)⟩.

Step 4.Mutate K̂u(X) through π̂∗Db(PV )⊗O
X̂
(−Z ′) and then mutate π̂∗Db(PV )⊗O

X̂
(−Z ′)

to the far right. Using again the formulas −K
X̂

= 2H −Z ′ +2h and ξ = H −Z ′, the result is

Db(X̂) =
〈
Rπ̂∗Db(PV )⊗O

X̂
(−Z′)K̂u(X), π̂∗Db(PV )⊗O

X̂
,

π̂∗Db(PV )⊗O
X̂
(ξ), π̂∗Db(PV )⊗O

X̂
(2ξ)⟩.

Comparing with the first semiorthogonal decomposition from Lemma 4.8, this shows that

Rπ̂∗Db(PV )⊗O
X̂
(−Z′)K̂u(X) = â∗

X̂
j∗D

b(W++).

Since all of the functors Rπ̂∗Db(PV )⊗O
X̂
(−Z′), â

∗
X̂
, and j∗ are PV -linear, it follows that there

is a PV -linear equivalence K̂u(X) ≃ Db(W++); explicitly, the composition

Lπ̂∗Db(PV )⊗O
X̂
(−Z′) ◦ â

∗
X̂
◦ j∗ : Db(W++) → K̂u(X)

is an equivalence. □
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