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AB S T R A C T. Complete intersections may be unexpectedly simple over fields of positive characteristic:
for instance, they may be unirational despite being of general type. One explanation is given by profiles,
structure that tracks the special shape of polynomials, refining the degree. The aim of this work is
to show that complete intersections with small profile should be considered simple by generalizing
two classical results on low degree complete intersections: First, the basic geometry of Fano schemes
associated with complete intersections depends only on the profile, so that complete intersections with
small profile contain many linear spaces. Second, a general complete intersection is unirational once
its dimension is sufficiently large compared to its profile.

IN T R O D U C T I O N

High degree hypersurfaces and complete intersections in projective space are, by most measures,
geometrically complicated. For instance, unlike the simplest of algebraic varieties [Kol01], high
degree hypersurfaces over the complex numbers contain very few—if any!—rational subvarieties:
see [Ein88, Voi96, Pac04, RY20]. New phenomena appear, however, in positive characteristic p > 0,
complicating the correlation between degree and geometric complexity. The Fermat hypersurface

X ··= {x
q+1
0 + · · ·+ xq+1

n = 0} ⊂ Pn

of degree q+ 1, with q = pe an integer power, is an exemplar: Many properties of X are reminiscent
of those typically expected in quadric hypersurfaces: it is projectively self-dual and its Gauss map is a
homeomorphism [Wal56, KP91]; its smooth hyperplane sections have constant moduli [Bea90]; it
has many linear spaces [Che25b]; and, if n≥ 3, it is even unirational [Shi74]! Traditionally, these
curiosities are explained ad hoc by identifying the equation of X with a Hermitian form for the
quadratic extension Fq2 | Fq, as in [BC66, Hef85, Shi01].

In contrast, I view the quadratic nature of X as the confluence between the almost linear nature of
q-powers in characteristic p and the special form of the equation of X . This perspective places this
Fermat hypersurface, a historically isolated example, in a broad context and suggests a systematic
way of identifying related phenomena. The approach taken here is as follows:

A profile with respect to q is an integer polynomial a(t) = a0+ a1 t+ · · ·+ am tm ∈ Z≥0[t] subject to
a technical condition, given in 1.1, which is satisfied, for example, if a j ≤ q− 1 for each j = 0, . . . , m.
A polynomial with coefficients a field k of characteristic p is said to have profile a(t) with respect to
q—or simply is called a (q; a)-tic polynomial—if it is of the form

f (x0, . . . , xn) =
∑

i∈I

∏m

j=0
fi, j(x0, . . . , xn)

q j
∈ k[x0, . . . , xn]

where each fi, j is a homogeneous polynomial of degree a j . The form of this expression is invariant
under linear changes of variables, so (q; a)-tic polynomials span a canonical linear subspace within
the space of polynomials of degree a(q) = a0 + a1q + · · ·+ amqm. The vanishing locus in Pn of a
(q; a)-tic polynomial is a (q; a)-tic hypersurface. The Fermat hypersurface above is an example with
profile a(t) = 1+ t with respect to q. The purpose of this works is to develop the following principle:
(q; a)-tic hypersurfaces behave as if they were hypersurfaces of degree a(1+ ϵ)≈ a0 + a1 + · · ·+ am for
some small real number ϵ > 0.
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One aspect of this principle is that hypersurfaces sharing the same profile should be treated as a
single family. Concretely, one looks for properties of (q; a)-tic hypersurfaces which may be expressed
in terms of the profile a, ideally independently of, or at least uniformly in, the prime power q. A
simple illustration of this is found in the geometry of linear spaces:

Theorem A. — Let a =
∑

j≥0 a j t
j be a profile such that a ̸= 2tm. The Fano scheme Fr(X ) of r-planes

in a (q; a)-tic hypersurface X ⊂ Pn is cut out of the Grassmannian by a section of a vector bundle of rank

δ(n, a, r) ··= (r + 1)(n− r)−
∏

j≥0

�

a j + r
r

�

.

If δ(n, a, r)< 0, then Fr(X ) is empty for X general. If δ(n, a, r)≥ 0, then Fr(X ) is

(i) nonempty for every X ;
(ii) irreducible of dimension δ(n, a, r) for X general;

(iii) smooth of dimension δ(n, a, r) for X general when the profile has constant term a0 ̸= 0; and
(iv) connected for every X when δ(n, a, r)> 0.

If Fr(X ) is of dimension δ(n, a, r), then its dualizing sheaf is given by a power of the Plücker line bundle:

ωFr (X )
∼= OFr (X )(γ(a, r, q)− n− 1) where γ(a, r, q) ··=

a(q)
r + 1
·
∏

j≥0

�

a j + r
r

�

.

This is a summary of 3.1, 3.2, and 3.12 in the case of a hypersurface, all of which are formulated
and proven without the restriction a ̸= 2tm and more generally for (q;a)-tic complete intersections,
vanishing loci of a regular sequence of (q; a)-tic polynomials with a ranging over a multi-set of
profiles a. These generalize classical results on Fano schemes of complete intersections and, once the
techniques developed for handling (q; a)-tic equations are developed in §§1–2, their proofs essentially
follow the strategy from the classical case found in [DM98, §2] and [Kol96, §V.4].

A second aspect of this principle is, of course, that (q; a)-tic hypersurfaces whose profile is small
compared to its dimension should be geometrically simple, regardless of the prime power q. Theorem
A is some evidence in this direction since the dimension of the Fano scheme depends only on a and
not on q. To explain a second result in this direction, recall classical results of Morin and Predonzan
from [Mor42, Pre49] which show that a general complete intersection in Pn is unirational whenever
its total degree d is much smaller than n; see [Rot55, pp.44–46] for a classical source, but also [PS92]
for a succinct exposition in modern language and [Ram90] for an improved bound. An analogue of
this for (q;a)-tic complete intersections is:

Theorem B. — Given a multi-profile a, there exists an integer n0 ··= n0(a), depending only on a, such
that for all n≥ n0, a general (q;a)-tic complete intersection in Pn is unirational.

This is proven in §7 via an intricate inductive argument, using the constructions developed in
§§4–6. The integer n0(a) can be computed for small a: see 7.8. A similar result, formulated and
proven in a different language, seems to appear in [Shi95]; see also the related result in [Shi92].

Briefly, the unirationality construction of Morin and Predonzan goes as follows: given a general
complete intersection X ⊂ Pn of multi-degree d = (d1, . . . , dc), projection away from a general
r-plane in X yields a fibration eX → Pn−r−1 whose generic fibre X ′ is itself a complete intersection of
multi-degree d′ = (d1 − 1, . . . , dc − 1) in a Pr+1. With an appropriate choice of r and n depending on
d, it is possible to find a base change of X ′ that carries a large linear space, allowing the argument to
proceed inductively. This strategy does not adapt in a straightforward manner for (q;a)-tic complete
intersections because the generic fibre of the projection eX → Pn−r−1 does not seem to have structure
that is captured by the theory of profiles: see 4.5 for an explicit example.



GEOMETRY OF (q; a)-TIC HYPERSURFACES 3

Instead, Theorem B is established with a generalization of an old unirationality construction for
cubic hypersurfaces found in [CG72, Appendix B] and [Mur72, §2] which is based on the following
observation: Given a hypersurface X ⊂ Pn of degree d, the space of penultimate tangents

X ′ = {(x , [ℓ]) : ℓ ⊂ Pn a line intersecting X at x with multiplicity ≥ d − 1}

is generically a family of complete intersections of multi-degree d′ = (d − 2, d − 3, . . . , 1) over X .
Moreover, for X general, there is a dominant rational map X ′ ¹¹Ë X sending (x , [ℓ]) to the residual
point of intersection x ′ = X ∩ ℓ− (d − 1)x . By restricting X ′ to a sufficiently large and general linear
space in X , unirationality can be established by induction on a poset consisting of all multi-degrees.
In particular, it is essential to prove the result for all complete intersections.

Much effort is made to perform the constructions in §§4–7 globally, so that they work well in
families, albeit introducing additional technicalities. The hope is to eventually make the generality
conditions on X in Theorems A and B effective n sufficiently large. In characteristic 0, the works
[HMP98, BR21] show that the Fano schemes Fr(X ) of every smooth hypersurface X ⊂ Pn of degree d
is irreducible of its expected dimension once n≥ 2

�d+r−1
r

�

+ r. This may then be used in a refinement
of the Morin construction to show that every smooth hypersurface of degree d is unirational once
n ≥ 2d!. While it is possible that these results may be extended to characteristics p > d, Theorem
A shows that these statements cannot hold verbatim when p ≤ d wherein there exists a nontrivial
profile a with a(p) = d: see 1.3(i). An optimistic guess would be that the appearance of these
canonical sub-linear systems is the only issue which arises, suggesting the following:

Conjecture C. — Let a(t) = a0 + · · ·+ am tm ∈ Z≥0[t] with a0 ̸= 0 and r ∈ Z≥1. Then there exists an
integer n0(a, r) such that for every prime p ≥maxi{ai}, every n≥ n0(a, r), and every smooth (p; a)-tic
hypersurface X ⊂ Pn, the Fano scheme Fr(X ) is irreducible of dimension δ(n, a, r).

Note that n0(a, r) does not depend on p, so that Conjecture C predicts a uniform phenomenon for
varying characteristic. Unfortunately, this statement cannot be quite right for higher prime powers
q, since there will be a profile with respect to p with larger expected dimension. A result in this
direction would be a first step toward an effective statement for unirationality.

Further questions. — This work is primarily focussed on the linear projective geometry of (q; a)-tic
hypersurfaces, and so many basic questions and properties remain to be explored: automorphisms,
moduli, singularities, and so forth. Three main directions that seem the most interesting are:

First, the principle that (q; a)-tic hypersurfaces behave as if they were of degree a(1+ϵ) is taken to
be a rough qualitative heuristic, and it would be interesting to make this more precise and quantitative.
For instance, the work in [Che25b, Che24] shows that the geometry of lines in hypersurfaces of
profile a(t) = 1+ t, or q-bic hypersurfaces, is reminiscent of that of cubics.

Second, the theory developed here is extrinsic in that (q; a)-tic-ness is a structure with which an
object may be equipped with. Might there be an intrinsic characterization? One instance occurs with
q-bic hypersurfaces, wherein [KKP+22] show that they are characterized amongst hypersurfaces of
the same degree as those having the smallest F -pure threshold. From a different direction, many
examples suggest that non-F -splitness is related to the special form of the defining equations: see
[Sai17, BLRT23, KKP+21, MW25] for a few examples.

Third, the definition in §2 of (q; a)-tic polynomials generalize to provide canonical linear systems
in Γ (Y,L ⊗a(q)) for any scheme Y and L ∈ Pic Y . The situation here is the case (Y,L ) = (Pn,OPn(1)),
and other cases that have occurred in the literature include Deligne–Lusztig varieties [DL76] and
the Frobenius incidence correspondence of [Shi12]. It would be interesting to study the special
properties of the divisors and linear systems constructed in this fashion.
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Outline. — §1 develops the combinatorics of profiles and §2 gives a definition of (q; a)-tic hyper-
surfaces and studies their basic properties. Fano schemes of (q;a)-tic complete intersections are
studied in §3. Families of (q; a)-tic complete intersections are defined in §4. The penultimate tangent
construction for families is made in §5 and the corresponding residual point map is studied in §6.
Finally, the unirationality result is proven in §7.

Notation. — Throughout, k denotes an algebraically closed field of characteristic p > 0 and q ··= pe

is a positive integer power of p. Unless otherwise stated, V denotes a k-vector space of dimension
n + 1. Write Fr: k → k for the q-power Frobenius morphism and, for any k-vector space W , let
W [1] ··= k⊗Fr,k W be its Frobenius twist. Set W [0] ··=W and, for each integer i ≥ 1, inductively define
W [i+1] ··= (W [i])[1]. Schemes are all taken to be over k and PV is the projective space of lines in V .

Acknowledgements. — Thanks to Jan Lange, Matthias Schütt, and Noah Olander for their interest
and helpful conversations related to this work. I was supported by a Humboldt Postdoctoral Research
Fellowship during the completion of this work.

1. PR O F I L E S

A profile is a discrete invariant associated with a polynomial in positive characteristic p > 0 which
records its special shape with respect to a positive integer power q = pe of the characteristic. Profiles
are subject to a technical condition which ensures a certain uniqueness in writing polynomials in
their distinguished form: see 1.5. While this hypothesis is not strictly necessary at this point, it often
becomes important in applications. This section defines profiles and studies their combinatorics,
especially various order relations amongst profiles.

1.1. Profiles. — Given an integer polynomial a(t) ··= a0 + a1 t + · · · + am tm with nonnegative
coefficients, consider the tensor functor defined by

Sa(V∨) ··=
⊗m

j=0
Syma j (V∨)[ j].

Identifying Syma j (V∨)[ j] with the k-linear subspace of Syma jq
j
(V∨) consisting of q j-powers provides

a multiplication map

mult: Sa(V∨)→ Syma(q)(V∨).

Call a(t) a profile with respect to the prime power q if this multiplication map is injective for all
finite-dimensional k-vector spaces V . Denote by

Prfl ··= {a ∈ Z≥0[t] : mult: Sa(V∨)→ Syma(q)(V∨) is injective for all finite-dimensional V}

the set of profiles with respect to q. Given a ∈ Prfl and a vector space V , Sa(V∨) will often tacitly be
identified with its image in Syma(q)(V∨) under the injective multiplication map.

Whether or not a given element of Z≥0[t] is a profile depends on q: For instance, a(t) ··= t + q is
not a profile with respect to q since, for a 2-dimensional vector space V∨ = k · u⊕ k · v, the elements
u[1] ⊗ vq and v[1] ⊗ uq are distinct in Sa(V∨), but have the same image in Sym2q(V∨). The same
polynomial t + q is, however, a profile with respect to qk for any k ≥ 2. In what follows, however, q
remains fixed, the dependence of Prfl on q will be suppressed.

1.2. Partial orderings on profiles. — Endow Prfl with two partial orderings as follows: First,
viewing a profile as a sequence of nonnegative integers provides the product ordering ⪯, where for
profiles a ··=
∑

j≥0 a j t
j and b ··=
∑

j≥0 b j t
j ,

a ⪯ b ⇐⇒ a j ≤ b j for all j ≥ 0.
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Second, identifying a a ∈ Prfl with the space Sa(V∨) provides the containment ordering ⊑, where
a ⊑ b if and only if a(q) = b(q) =·· d and

Sa(V∨) ⊆ Sb(V∨) ⊆ Symd(V∨) for all finite-dimensional k-vector spaces V ,

where the tensor functors are identified with their image under the multiplication map.

1.3. Examples and properties. — Regarding the partial orderings ⪯ and ⊑ on Prfl:

(i) The product ordering is strictly monotonic for numerical degrees: If a ≺ b, then a(q)< b(q).
The containment ordering, on the other hand, splits Prfl into connected components

Prfld ··= {a ∈ Prfl : a(q) = d}

indexed by numerical degrees. Each Prfld has a unique ⊑-maximal element given by the
constant profile ad-max(t) = d, and a unique ⊑-minimal element given by ad-min(t) =
a0 + a1 t + · · ·+ am tm with coefficients 0≤ a j ≤ q− 1 arising from the base q expansion of d.

(ii) More interestingly, both orderings are strictly monotonous for coefficient sums. This is clear
for ⪯. To see that a ⊏ b implies a(1) < b(1), observe that Sa(V∨) ⊂ Sb(V∨) for varying
vector spaces V gives the dimensional inequality

∏

j≥0

�

a j + n
a j

�

<
∏

j≥0

�

b j + n

b j

�

for all n≥ 0.

Using that
�n

k

�

∼ nk

k! for large n and fixed k, taking logarithms, and doing away with constants
shows that for all n≫ 0,

∑

j≥0
a j · log(a j + n)<

∑

j≥0
b j · log(b j + n).

By taking n even larger, log(n) may be made arbitrarily close to log(c+ n) for any constant c.
Since there are only finitely many constants a j and b j , this implies that a(1)< b(1).

(iii) Neither⪯ nor⊑ give total orderings on Prfl. This remains the case for⊑ even upon restriction
to a connected component Prfld : for instance,

a(t) ··= t2 + (q+ 1) and b(t) ··= (q+ 1)t + 1

are profiles of numerical degree d = q2 + q+ 1 which are ⊑-incomparable.
(iv) Call b ∈ Prfl nonreduced if its constant term is zero: b(0) = 0. Any profile a preceding a

nonreduced profile b in either ordering is also nonreduced.
(v) Both orderings are compatible with addition in the following sense: For a, b, c ∈ Prfl such

that a+ c and b+ c are also profiles,

if a ⊑ b, then a+ c ⊑ b+ c,

and similarly for ⪯. This is straightforward to see for ⪯. For ⊑, let V be a k-vector space
and let f ∈ Sa+c(V∨). Then there exists an expansion of the form

f =
∑

i∈I
gihi with gi ∈ Sa(V∨) and hi ∈ Sc(V∨).

Viewing the gi as elements of Sb(V∨) shows that f ∈ Sb+c(V∨).

A third ordering⇝ on Prfl obtained by combining the two will be also be useful: For a, b ∈ Prfl,

a⇝ b ⇐⇒ there exists a′ ∈ Z≥0[t] such that a ⪯ a′ ⊑ b.

Here, the relations ⪯ and ⊑ are extended to Z≥0[t] in the natural way: a ⪯ a′ means that each coef-
ficient of a′ is at least that of a, and a′ ⊑ b means that the image of Sa′(V∨) under the multiplication
map is contained in Sb(V∨) for all finite-dimensional k-vector spaces V .
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1.4. Lemma. — The relation⇝ is a partial ordering on Prfl.

Proof. Reflexivity and antisymmetry follow directly from the corresponding properties of ⪯ and ⊑.
For transitivity, consider a, b, c ∈ Prfl such that a⇝ b and b⇝ c. By definition, this means that there
are a′, b′ ∈ Z≥0[t] satisfying

a ⪯ a′ ⊑ b and b ⪯ b′ ⊑ c.

Consider a′′ ··= a′ + (b′ − b). Since b ⪯ b′, each coefficient of b′ − b is nonnegative, and so a ⪯ a′′.
Compatibility with addition from 1.3(v) holds more generally for ⊑ on Z≥0[t], and it implies that
a′′ ⊑ b′. Transitivity of ⊑ then gives a′′ ⊑ c, showing that a′′ witnesses the relation a⇝ c. ■

These partial orderings, ⪯ in particular, make it simple to formulate a criterion for when a
nonnegative integer polynomial a ∈ Z≥0[t] is a profile with respect to q:

1.5. Lemma. — Given a ∈ Z≥0[t], the following conditions are equivalent:

(i) mult: Sa(V )→ Syma(q)(V ) is injective for every finite-dimensional k-vector space V ;
(ii) mult: Sa(V )→ Syma(q)(V ) is injective for a 2-dimensional k-vector space V ; and

(iii) the function {b ∈ Z≥0[t] : 0⪯ b ⪯ a} → Z given by b 7→ b(q) is injective.

Proof. (i)⇒ (ii) is clear. For (ii)⇒ (iii), choose a basis V = k·u⊕k·v. Writing a = a0+a1 t+· · ·+am tm,
a basis for Sa(V ) is given by

Sa(k · u⊕ k · v) =
⊗m

j=0
Syma j (k · u⊕ k · v)[ j] =

⊗m

j=0

�⊕a j

b j=0
k · (ua j−b j vb j )[ j]

�

=
⊕a0

b0=0
· · ·
⊕am

bm=0
k · (ua0−b0 vb0)⊗ (ua1−b1 vb1)[1] ⊗ · · · ⊗ (uam−bm vbm)[m].

Multiplication sends the displayed basis element to ua(q)−b(q)vb(q) where b ··= b0+ b1 t+ · · ·+ bm tm, so
injectivity of mult: Sa(V )→ Syma(q)(V ) is, in fact, equivalent to injectivity of the function b 7→ b(q).

Finally, for (iii)⇒ (i), suppose for sake of contradiction that there is a V for which mult: Sa(V )→
Syma(q)(V ) is not injective; choose such a V of minimal dimension and a nonzero element α ∈ Sa(V )
in the kernel. The previous argument shows that dimk V ≥ 2, making it possible to choose a nonzero
vector v ∈ V , a complementary subspace 0 ̸= U ⊆ V , and a splitting V = U ⊕ k · v. Writing

Syma j (V ) = Syma j (U ⊕ k · v) =
⊕a j

b j=0
Syma j−b j (U) · vb j

provides α with a unique expansion of the form

α= C · va(q) +
∑

0⪯b≺a

�∑

i∈Ib
(βi,0 · vb0)⊗ (βi,1 · vb1)[1] ⊗ · · · ⊗ (βi,m · vbm)[m]

�

for some C ∈ k and some βi, j ∈ Syma j−b j (U) for each i ∈ Ib and 0≤ j ≤ m. Since α ∈ ker(mult),

0=mult(α) = C · va(q) +
∑

0⪯b≺a

�∑

i∈Ib
βi,0β

[1]
i,1 · · ·β

[m]
i,m

�

· vb(q).

The hypothesis that {b ∈ Z≥0[t] : 0 ⪯ b ⪯ a} → Z: b 7→ b(q) is injective implies that C = 0
and that each parenthesized term must vanish. Since α is nonzero, some βi, j is nonzero, and so
mult: Sa−b(U) → Syma(q)−b(q)(U) is not injective for some b ≺ a. Multiplying by any element in
Sb(U) with nonzero image in Symb(q)(U) then implies that mult: Sa(U)→ Syma(q)(U) is also not
injective. This contradicts the minimality of V , completing the proof. ■

A simple but very useful consequence of this characterization used tacitly throughout—in 3.14 for
instance—is the following

1.6. Corollary. — Let a, b ∈ Z≥0[t] with a ⪯ b. If b ∈ Prfl, then also a ∈ Prfl. ■
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2. (q;a)-T I C S C H E M E S

Each a ∈ Prfl determines a canonical linear system

Γ (Y,L ⊗a) ··= image(mult: SaΓ (Y,L )→ Γ (Y,L ⊗a(q)))

for every k-scheme Y and L ∈ Pic Y ; note that for general (Y,L ), the displayed multiplication map
may not be injective. Divisors in the corresponding linear series tend to be special compared to the
general divisor in the complete linear series associated with L ⊗a(q) due to the special form of its
equations. One way to access these special properties is by carrying as additional structure a lift of
its defining section to the tensor product space SaΓ (Y,L ). This article is concerned primarily with
the case of projective n-space Y = PV and L = OPV (1), and this section describes some of the basic
properties of complete intersections of such hypersurfaces.

2.1. Definitions. — Let a ∈ Prfl be a profile.

– A (q; a)-tic tensor is an element α ∈ Sa(V∨).
– A (q; a)-tic polynomial is the image fα ··=mult(α) of a (q; a)-tic tensor under multiplication.
– A (q; a)-tic hypersurface is the zero locus Xα ··= V( fα) in PV of a nonzero (q; a)-tic polynomial.

More generally, given a multi-profile a—a finite multi-set consisting of elements of Prfl—let

Sa(V∨) ··=
⊕

a∈a Sa(V∨)

be the space of (q; a)-tic tensors. Given such a tensor α, the vanishing locus Xα ··= V( fα : α ∈ α) ⊆ PV
of its associated polynomials is called a (q;a)-tic scheme; when the sequence of defining polynomials
form a regular sequence, Xα is called a (q;a)-tic complete intersection.

2.2. Examples. — Given a profile a = a0 + a1 t + · · ·+ am tm, a (q; a)-tic polynomial is of the form

f =
∑

i∈I
gi,0 · (gi,1)

q · · · (gi,m)
qm

where gi, j is a homogeneous polynomial of degree a j . Some simple instances include:

(i) The constant polynomial a(t) = d is a profile for any prime power q, and (q; a)-tic polynomial
is synonymous for degree d polynomial. In particular, if a(t) = 1 is a linear profile, then
(q; a)-tic polynomials are linear polynomials.

(ii) If a profile a(t) = a1 t + · · ·+ am tm has zero constant term, so it is nonreduced, then any
(q; a)-tic polynomial is a k-linear combination of q-power monomials, and its associated
hypersurface is geometrically nonreduced.

(iii) a(t) = 1+ t + · · ·+ tm is a profile for any q, and (q; a)-tic polynomials are of the form

f (x0, . . . , xn) =
∑n

i0,...,im=0
ci0,i1,...,im ·
∏m

j=0
(x i j
)q

j
for scalars ci0,i1,...,im ∈ k.

In particular, when a(t) = 1+ t, these are the q-bic hypersurfaces from [Che25b, 1.6], and
the underlying (q; a)-tic tensor is but a q-bic form in the sense of [Che25a, 1.1].

(iv) a(t) = 2+ t is a profile whenever q ̸= 2, and (q; a)-tic polynomials are of the form

f (x0, . . . , xn) =
∑

0≤i≤ j≤n

∑n

k=0
ci jk · x i x j x

q
k for scalars ci jk ∈ k.

(v) The Fermat polynomial xd
0 + · · ·+ xd

n of degree d is a (q; a)-tic polynomial for any profile a of
numerical degree a(q) = d. This provides a cheap proof of the fact that the general (q; a)-tic
hypersurface is smooth whenever its numerical degree is coprime to the characteristic p; see
2.8 for another argument in the general case.

A simple but extremely useful observation is that a (q; a)-tic structure is preserved upon passing to
linear sections. The following statement follows easily from functoriality of tensor functors:

https://arxiv.org/pdf/2307.06160.pdf#subsection.1.6
https://arxiv.org/pdf/2301.09929.pdf#subsection.1.1
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2.3. Lemma. — Let X ⊆ PV be a (q;a)-tic scheme associated to a tensor α. If PU ⊆ PV is a linear
subspace, then X ∩ PU is the (q;a)-tic scheme in PU associated with the tensor α|U . ■

2.4. (q; a)-tic Veronese. — The linear system Sa(V∨) of (q; a)-tic polynomials, being a tensor
product of Frobenius twists of the complete linear systems Γ (PV,OPV (a j)), is base point free and so
defines a morphism

Vera : PV → P(Sa(V∨)∨)

called the (q; a)-tic Veronese morphism. This description shows that Vera canonically factors as

Vera : PV
(Vera j

)
−→
∏

j≥0
P(Syma j (V∨)∨)

∏

Fr j

−→
∏

j≥0
P(Syma j (V∨)∨,[ j])

Seg
−→ P(Sa(V∨)∨)

where the first map is the tuple whose j-th factor is the a j-th Veronese embedding; the second map is
a product of powers of the q-power k-linear Frobenius morphism, with Fr j acting on the j-th factors;
and the third map is the Segre embedding. This gives the first statement of:

2.5. Lemma. — The (q; a)-tic Veronese morphism Vera : PV → P(Sa(V∨)∨) is universally injective.
Furthermore, if a is reduced, then Vera is a closed immersion.

Proof. Assume a is reduced, meaning its constant term satisfies a0 ̸= 0, and consider the factorization
from 2.4. Since the Segre embedding is a closed immersion, it suffices to show that

�

∏

j≥0
Fr j
�

◦
�

Vera j

�

j≥0 : PV →
∏

j≥0
P(Syma j (V∨)∨,[ j])

is an isomorphism onto its image. But this clear since projection onto the 0-th factor provides the
a0-th Veronese embedding of PV , which is an isomorphism onto its image whenever a0 ̸= 0. ■

2.6. Example. — Consider a = t r(1+ tm) for integers r ≥ 0 and m > 0, and PV ∼= P1. Then the
a-th Veronese is the morphism P1→ P3 given by

Vert r (1+tm)(x : y) = (xqr (1+qm) : (xqm
y)q

r
: (x yqm

)q
r

: yqr (1+qm)).

When r = 0, then Ver1+tm : P1 → P3 is an isomorphism onto its image, providing what might be
viewed as a generalization of the twisted cubic, which may be obtained by taking q = 2 and m= 1.

2.7. Parameter space. — Let a be a multi-profile. A parameter space for (q; a)-tic schemes in PV is
given by the multi-projective space

(q;a)-ticsPV ··=
∏

a∈a
PSa(V∨).

The tautological line subbundles come together to form a tautological (q;a)-tic tensor

αtaut :
⊕

a∈a pr∗a OPSa(V∨)(−1)→O(q;a)-ticsPV
⊗ Sa(V∨)

which cuts out a tautological family Xtaut in the product PV × (q;a)-ticsPV .
Standard arguments show that the second projection Xtaut→ (q;a)-ticsPV is dominant if and only

if #a≤ n. In this case, as usual, a property is said to hold for a general (q;a)-tic scheme in PV if it
holds for each fibre of Xtaut over a nonempty open subset of (q;a)-ticsPV . In the following, call the
multi-profile a reduced if every a ∈ a is reduced:

2.8. Proposition. — If the multi-profile a is reduced and #a≤ n, then a general (q;a)-tic scheme in
PV is smooth of dimension n−#a.
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Proof. Let ∆ ⊆ (q;a)-ticsPV be the subset parameterizing (q;a)-tic schemes which are not smooth of
dimension n−#a. This is closed subset as it is supported on the image of the nonsmooth locus of
the proper morphism Xtaut→ (q;a)-ticsPV . Thus it suffices to show that there exists a single smooth
(q; a)-tic complete intersection. This follows from Bertini’s theorem as given in [Stacks, 0FD6], where
the hypotheses are satisfied thanks to 2.4 and 2.5. ■

It would be interesting to study the discriminant locus ∆. For q-bic hypersurfaces as in 2.2(iii),
∆ is cut out by a determinantal equation, similar to the case of quadrics, and carries an intricate
stratification corresponding to singularity types of the corresponding hypersurfaces: see [Che25a, §6]
for details. It would also be interesting to compute numerical invariants of∆, such as its multi-degree,
as is done in [Ben12] in the classical case.

3. L I N E A R S PA C E S

One of the most apparent special properties of a (q;a)-tic complete intersection X ⊆ PV is that it
contains many more linear spaces than would be expected given its numerical degree. From the point
of view of this article, this is because its Fano schemes Fr(X )—the Hilbert schemes parameterizing
r-planes contained in X —inherit a (q; a)-tic structure, resulting in a smaller set of defining equations
in the Grassmannian G ··= G(r + 1, V ) of r-planes in PV . Writing S for the tautological subbundle of
rank r + 1 on G, this explicitly means the following:

3.1. Lemma. — Let X ⊆ PV be a (q;a)-tic scheme. Its Fano scheme Fr(X ) of r-planes is cut out of the
Grassmannian G by a section of Sa(S ∨) ··=

⊕

a∈a Sa(S ∨).

Proof. Injectivity of the multiplication maps in the definition of profiles in 1.1 implies that the
polynomials defining X vanish on an r-plane PU ⊆ PV if and only if the corresponding (q;a)-tic
tensor α ∈ Sa(V∨) vanishes along the restriction V∨→ U∨. Thus Fr(X ) is cut out by the section

α|S : OG→OG ⊗ Sa(V∨)→ Sa(S ∨). ■

This provides a lower bound on the dimension of the Fano scheme Fr(X ) of r-planes associated
with a (q;a)-tic scheme X ⊆ PV in an n-dimensional projective space: If Fr(X ) ̸=∅, then

dimFr(X )≥ δ(n,a, r) ··= (r + 1)(n− r)−
∑

a∈a

∏

j≥0

�

a j + r
r

�

where a =
∑

j≥0
a j t

j .

Notably, the expected dimension δ(n,a, r) of the Fano scheme, depends on a but not on q; equivalently,
this means that the expected dimension of Fr(X ) does not directly depend on the degree of X !

The main result of this section is that Fr(X ) is of its expected dimension for a general (q;a)-tic
scheme X , and will be furthermore smooth provided that the multi-profile a is reduced. As is well-
known, the statement requires a slight modification when X is a quadric, in which case the dimension
estimate δ(n,a, r) is too big when r ≈ 1

2 n. To give a uniform statement, define

δ−(n,a, r) ··=min{δ(n,a, r), n− 2r −#a}.

One may verify that, other than in the case a = (2tk) ∪ a′ where each a ∈ a′ is of the form tm,
δ(n,a, r)≥ 0 if and only if δ−(n,a, r)≥ 0, and similarly for > 0. The statement is now the following:

3.2. Theorem. — Let X ⊆ PV be a (q;a)-tic scheme. If

(i) δ−(n,a, r)< 0, then Fr(X ) is empty for general X ;
(ii) δ−(n,a, r)≥ 0, then Fr(X ) is nonempty and has dimension δ(n,a, r) for general X ; and

(iii) δ−(n,a, r)> 0, then Fr(X ) is connected for all X .

Furthermore, if a is reduced, then Fr(X ) is also smooth for general X when δ−(n,a, r)≥ 0.

https://stacks.math.columbia.edu/tag/0FD6
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The proof of 3.2 occupies the bulk of this section: see, in particular, 3.11 where the intervening
statements are put together to complete the argument. Begin with two reductions:

3.3. Reductions. — First, it suffices to treat the case a is reduced. If a is nonreduced, let a′ be the
reduced multi-profile obtained by maximally dividing out powers of t from each profile in a. Given a
(q; a)-tic scheme X , there is a canonical (q; a′)-tic scheme X ′ obtained by taking q-power roots of the
appropriate equations. This comes with a closed immersion X ′→ X which is furthermore a universal
homeomorphism. This provides a universal homeomorphism Fr(X ′)→ Fr(X ) and so topological
properties of the two are the same.

Second, we may assume that 1 /∈ a. Otherwise, amongst the defining equations of a (q;a)-tic
scheme X ⊆ PV = Pn is a linear one. Eliminating that allows us to view X ⊆ Pn−1. Writing a = (1)∪a′,
a direct computation shows that δ−(n,a, r) = δ−(n− 1,a′, r), and so it suffices to prove 3.2 for X
viewed as a (q;a′)-tic scheme in Pn−1.

From now on, assume that the profile a is reduced and 1 /∈ a. The argument looks to lower bound
the codimension of the singular locus Zr of the second projection from the incidence correspondence

Incr ··= IncV,r,a ··=
�

([U], [α]) ∈ G(r + 1, V )× (q;a)-ticsPV : PU ⊆ Xα
	

to the parameter space of (q; a)-tic tensors from 2.7. Observe that pr1 : Incr → G(r+1, V ) is surjective,
with the fibre over a point [U] a multi-projective space given by

Incr,[U] =
∏

a∈a
PSa(V∨)U

where Sa(V∨)U ··= ker(Sa(V∨)→ Sa ‘(U∨)) is the kernel of the restriction map. This has codimension
∑

a∈a
∏

j≥0

�r+a j
r

�

in the product and so gives:

3.4. Lemma. — The incidence correspondence Incr is irreducible, proper, and smooth of dimension

dim Incr = δ(n,a, r) + dim (q;a)-ticsPV . ■

The first task is to explicitly describe the closed subset Zr ⊆ Incr on which pr2 : Incr → (q; a)-ticsPV

is not smooth of expected dimension δ(n,a, r): Let PU be any r-plane contained in X ··= Xα. Write
a= (a1, . . . , ac) as a c-tuple of profiles ai =

∑

j≥0 ai, j t
j, and let αi ∈ Sai (V∨) be the components of

the (q;a)-tic tensor α defining X . Consider the map

ρU , fα : U∨ ⊗ (V/U)→
⊕c

i=1
H0(PU ,OPU(ai(q)))

ξ⊗ v̄ 7→ (ξ · ∂v fα1
|PU , . . . ,ξ · ∂v fαc

|PU)

which takes a pure tensor ξ⊗ v̄ to the c-tuple of polynomials whose i-th entry is ξ times the directional
derivative ∂v fαi

of the i-th equation of X along any lift v ∈ V of v̄, all then restricted to PU . Since
first-order derivatives act linearly through q-powers, ρU , fα in fact takes values within the subspace of
(q;a)-tic polynomials. More precisely:

3.5. Lemma. — There exists a linear map ρU ,α : U∨ ⊗ (V/U)→ Sa(U∨) which factors ρU , fα through
the multipication map mult: Sa(U∨)→

⊕c
i=1 H0(PU ,OPU(ai(q))).

Proof. The map ρU ,α is that which simply acts on the first component of each tensor αi. Explicitly,
the pure tensor ξ⊗ v̄ is mapped to the c-tuple with i-th term

ξ · ∂vαi|PU =
∑

k
(ξ · ∂vαi,0,k)⊗ (αi,1,k)

[1] ⊗ · · · ⊗ (αi,mi ,k)
[mi]|PU

where each αi, j,k ∈ Symai, j (V∨). The preceding comments imply that ρU , fα =mult◦ρU ,α. ■
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If PU were contained in the smooth locus of X , then the tangent space to Fr(X ) at the point [PU]
is given by the space of sections the normal bundle of PU ⊆ X . The normal bundle sequence, 3.5,
and injectivity of mult together given canonical identifications

H0(PU ,NPU/X )∼= kerρU , fα
∼= kerρU ,α.

Therefore Fr(X ) is smooth of dimension δ(n,a, r) at the point [PU] if and only if the map ρU ,α is
surjective. This property characterizes the complement of Zr in general:

3.6. Lemma. — pr2 : Incr → (q;a)-ticsPV is smooth of dimension δ(n,a, r) at a point ([U], [α]) if
and only if ρU ,α : U∨ ⊗ (V/U)→ Sa(U∨) is surjective. In particular,

Zr =
�

([U], [α]) ∈ Incr : ρU ,α : U∨ ⊗ (V/U)→ Sa(U∨) is not surjective
	

.

Proof. Both Incr and (q;a)-ticsPV are smooth, so pr2 is smooth of dimension δ(n,a, r) at ([U], [α])
if and only if the map TIncr

→ pr∗2T(q;a)-ticsPV
on tangent bundles is surjective there. The discussion

above 3.4 shows that the fibre of pr1 over [U] maps isomorphically via pr2 to a multi-projective
subspace in the parameter space corresponding to the vector space Sa(V∨)U :

pr−1
1 ([U])

∼=
∏c

i=1
P
�

ker(Sai (V∨)→ Sai (U∨))
�

⊆
∏c

i=1
PSai (V∨) = (q;a)-ticsPV

Restricting the tangent map to the subbundle Tpr1
⊆ TIncr

and taking fibres thus gives a sequence

0→Tpr1,([U],[α])→T(q;a)-ticsPV ,[α]→ Sa(U∨)→ 0.

Combined with the isomorphism pr∗1TG
∼= TIncr

/Tpr1
from the tangent bundle sequence of pr1, this

means that the tangent map of pr2 at ([U], [α]) induces a map

(⋆) U∨ ⊗ (V/U)∼= TIncr ,([U],[α])/Tpr1,([U],[α])→T(q;a)-ticsPV ,[α]/Tpr1,([U],[α])
∼= Sa(U∨)

and pr2 is smooth of the expected dimension at ([U], [α]) if and only if this map is surjective.
Identify this map via deformation theory: A pure tensor ξ⊗ v̄ in U∨⊗ (V/U)∼= TG,[U] corresponds

to the first-order deformation of U ⊆ V given by the k[ε]-submodule

U[εξ · v̄] ··= 〈u+ εξ(u) · v : u ∈ U〉= {u1 + ε(ξ(u1) · v + u2) : u1, u2 ∈ U} ⊆ V ⊗k k[ε].

Its preimage in TIncr ,([U],[α]) classifies first-order deformations Xα+εβ , where β ∈ Sa(V∨), which
contain P(U[εξ · v̄]). The tangent map TIncr

→ T(q;a)-ticsPV
is the forgetful map which extracts

the (q;a)-tic tensor β parameterizing the first-order deformation of Xα. The map (⋆) thus acts as
ξ⊗ v̄ 7→ β |U for any choice of such β . To express β in terms of α, observe that the condition that
Xα+εβ contains P(U[εξ · v̄]) means that, for all u1, u2 ∈ U ,

(α+ εβ)(u1 + ε(ξ(u1) · v + u2)) = α(u1 + ε(ξ(u1) · v + u2)) + εβ(u1) = 0.

Writing αi =
∑

k αi,0,k ⊗ (αi,1,k)[1] ⊗ · · · ⊗ (αi,mi ,k)
[mi] for each component of α,

α
[ j]
i, j,k(u1 + ε(ξ(u1) · v + u2)) =

(

αi, j,k(u1)
q j

if j > 0, and

αi,0,k(u1) + ε(ξ(u) · ∂vαi,0,k(u) + ∂u2
αi,0,k(u)) if j = 0.

Expanding the tensor then gives

αi(u1 + ε(ξ(u1) · v + u2)) = αi(u1) + ε(ξ(u1) · ∂vαi(u1) + ∂u2
αi(u1)).

That α|U = 0 means that the first term vanishes: αi(u1) = 0 for all u1 ∈ U . A directional derivative
of a polynomial vanishing on U in a direction in U remains vanishing on U , so ∂u2

αi(u1) = 0 for all
u1, u2 ∈ U . Put together, this gives the result since

β(u) = −ξ(u) · ∂vα(u) = −ρU ,α(ξ⊗ v̄)(u) for all u ∈ U . ■
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This description of Zr is homogeneous in [U], making it possible to fix a subspace U and to
simply estimate the codimension of the inclusion of fibres Zr,[U] ⊂ Incr,[U]. Proceed by additionally
parameterizing a bound on the image of ρU ,α: Let H be the projective space of hyperplanes in Sa(U∨),
and consider the correspondence

Z ′r,[U] ··=
�

([α], [ϕ]) ∈ Incr,[U] ×H : ϕ ◦ρU ,α : U∨ ⊗ (V/U)→ k is zero
	

parameterizing Xα containing PU and a hyperplane in Sa(U∨) containing the image ofρU ,α. Projection
to Incr,[U] maps this onto Zr,[U]. The fibre of projection to H over a point ϕ : Sa(U∨)→ k is a product
of projective spaces on the kernel of the map

Φ: Sa(V∨)U → Hom(U∨ ⊗ (V/U),k) α 7→ ϕ ◦ρU ,α.

Writing a− 1= (a1 − 1, . . . , ac − 1), the following gives a stratification of the image Z ′r,[U] in H over
which the fibres have the same dimension:

3.7. Lemma. — Let µ: Sa−1(U∨)→ Hom(U∨, Sa(U∨)) be the map adjoint to multiplication, and set

Hk ··=
�

[ϕ] ∈ H : rank
�

ϕ∗ ◦µ: Sa−1(U∨)→ Hom(U∨,k)
�

= k+ 1
	

for each 0≤ k ≤ r.

Then Z ′r,[U] ×H Hk is of codimension (k+ 1)(n− r) in Incr,[U] ×Hk.

Proof. Identify the assignment α 7→ ρU ,α as the composition of linear maps

ρU ,− : Sa(V∨)U −→ Hom(V/U , Sa−1(U∨))
µ∗−→ Hom(V/U ,Hom(U∨, Sa(U∨)))

where the first arrow sends α to the linear map v̄ 7→ ∂vα|U , notation as in the proof of 3.5. Observe
also that the first map here is surjective, since a lift of a given β̄ ∈ Hom(V/U , Sa−1(U∨)) is

∑n

j=r+1
ξi ·β(v̄i) ∈ Sa(V∨)U

where the v̄i form a basis of V/U with dual coordinate ξi, and β(v̄i) ∈ Sa−1(V∨) is any lift of its
barred counterpart. Together, these observations imply that

rank(Φ) = rank(ϕ∗ ◦µ∗ : Hom(V/U , Sa−1(U∨))→ Hom(V/U , Hom(U∨,k)))

= rank(ϕ∗ ◦µ: Sa−1(U∨)→ Hom(U∨,k)) · dimk(V/U).

This means that the fibre of Z ′r,[U] over [ϕ] ∈ Hk is of codimension (k+ 1)(n− r) in Incr,[U] × {[ϕ]},
and this yields the statement. ■

To relate this with the codimension of Zr,[U] in Incr,[U], it remains to bound the dimension of Hk:

3.8. Lemma. — dimHk ≤ (k+ 1)(r − k) +
∑c

i=1

∏mi

j=0

�

k+ ai, j

k

�

− 1.

Proof. The image of ϕ∗ ◦µ is contained in the (k+ 1)-dimensional subspace Hom(U∨0 ,k) if and only
if ϕ : Sa(U∨)→ k vanishes on the image of the multiplication map

(U/U0)
∨ ⊗ Sa−1(U∨)→ Sa(U∨).

The cokernel of this map is isomorphic to Sa(U∨0 ), and any such ϕ is determined by its values thereon.
In other words, the closure Hk admits a surjection from the projective bundle on Sa(−) applied to
the dual tautological bundle on the Grassmannian G(k+ 1, U), yielding the dimension bound. ■

3.9. Proposition. — codim(Zr ⊂ Incr)≥ δ−(n,a, r) + 1.
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Proof. It suffices to show that the corresponding codimension estimate holds for each fibre Zr,[U] and
Incr,[U] over points [U] ∈ G(r + 1, V ). Since Zr,[U] is the image of Z ′r,[U] under the first projection,

codim(Zr,[U] ⊂ Incr,[U])≥ min
0≤k≤r

codim(Z ′r,[U] ×H Hk ⊂ Incr,[U] ×Hk)− dimHk

≥ min
0≤k≤r

(k+ 1)(n+ k− 2r)−
∑c

i=1

∏mi

j=0

�

k+ ai, j

k

�

+ 1

where the second inequality follows from 3.7 and 3.8. Now view the rightmost quantity as a
polynomial k; it is the difference between a quadratic polynomial and one of degree

∥a∥∞ ··=max{|ai| ··= ai,0 + ai,1 + · · ·+ ai,mi
: 1≤ i ≤ c},

the maximal coefficient sum of the profiles ai ∈ a. The identity
�k+d+1

k

�

= k+d+1
d+1

�k+d
k

�

easily implies

that the all derivatives of
∑c

i=1

∏mi
j=0

�k+ai, j

k

�

with respect to k are increasing in the parameters ai, j ≥ 0.
Explicitly computing second derivatives for the multi-profiles (3), (1+ t), and (2,2) implies that
whenever ∥a∥∞ ≥ 3 or ∥a∥∞ = 2 and a ̸= (2), the function in the minimum is concave for k ≥ 0.
When a = (2), the function is an increasing. In all cases, this means that the minimum is achieved at
the endpoints, either when k = 0 or k = r, so

codim(Zr,[U] ⊂ Incr,[U])≥min{n− 2r − c,δ(n,a, r)}+ 1= δ−(n,a, r) + 1. ■

Non-smooth points of Fr−1(X ) often contribute to non-smooth points of Fr(X ), producing compo-
nents of Zr that are too large. Writing ∆r for the image of Zr under pr2 : Incr → (q;a)-ticsPV , the
following statement says that members of Z◦r ··= Zr \ pr−1

2 (∆r−1) are parameterized by the piece of
highest codimension from 3.7:

3.10. Lemma. — Let ([U], [α]) ∈ Z◦r . If [ϕ] ∈ H is such that ϕ ◦ρU ,α = 0, then [ϕ] ∈ Hr .

Proof. Let ([U], [α]) ∈ Zr and choose [ϕ] ∈ Hk such that ϕ ◦ ρU ,α = 0. If k < r, then by its
definition from 3.7, this means that ϕ∗ ◦ µ: Sa−1(U∨) → Hom(U∨,k) is not surjective; choose a
hyperplane Hom(U∨0 ,k) containing the image. As in 3.8, this means that ϕ vanishes on the image of
the multiplication map

(U/U0)
∨ ⊗ Sa−1(U∨)→ Sa(U∨)

and that ϕ descends to a nonzero linear functional ϕ0 : Sa(U∨0 )→ k on the cokernel. Consider now
the point ([U0], [α]) ∈ Incr−1 and the corresponding tangent map ρU0,α : U∨0 ⊗ (V/U0)→ Sa(U∨0 ).
Since Xα contains PU , the tensor ∂uα for u ∈ U lifting a basis of U/U0 vanishes on PU ⊃ PU0, and so
ρU0,α factors through the map

U∨0 ⊗ (V/U)→ Sa(U∨0 ).

But this map is but a restriction of ρU ,α, and so its image is contained in the kernel of ϕ0. Thus ρU0,α

is not surjective, so ([U0], [α]) ∈ Zr−1 by 3.6, meaning that ([U], [α]) ∈ pr−1
2 (∆r−1). ■

3.11. — It remains to put everything together to prove 3.2:
For (i), if δ−(n,a, r) < 0 and a ̸= (2), then pr2 : Incr → (q;a)-ticsPV cannot be dominant by the

dimension computation in 3.4, and so Fr(X ) =∅ for general X . The case a= (2) is well-known.
For (ii), if δ−(n,a, r)≥ 0, then it follows from 3.10 that the intersection of Zr \ pr−1

2 (∆r−1) with
Incr,[U] is contained in the image of Z ′r,[U] ×H Hr for each [U] ∈ G(r + 1, V ). The argument of 3.9
then implies that the codimension of its closure in Incr is at least δ−(n,a, r) + 1, and so

dim
�

Zr \ pr−1
2 (∆r−1)
�

≤ dim Incr −δ−(n,a, r)− 1≤ dim (q;a)-ticsPV −1.
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Therefore ∆r \∆r−1 is not all of (q;a)-ticsPV . Induction on r—the base case with r = 0 is the
statement 2.8 that the general (q;a)-tic scheme is smooth—then shows that ∆r is a proper closed
subset of (q; a)-ticsPV , meaning that Fr(X ) is smooth of the expected dimension for general X by 3.6.

For (iii), when δ−(n,a, r)> 0, consider the Stein factorization

pr2 : Incr → Inc′r → (q;a)-ticsPV

of the second projection. Then Zr contains the preimage of the branch locus of Inc′r → (q;a)-ticsPV .
Since Zr has codimension at least 2 in Incr by 3.9, purity of the branch locus, as in [Stacks, 0BMB],
implies that Inc′r → (q;a)-ticsPV is finite étale; the target is a multi-projective space and so it is
simply connected, thus this is an isomorphism, and properties of the Stein factorization imply that
pr2 has connected fibres. In other words, Fr(X ) is connected for every X . ■

When Fr(X ) is of its expected dimension δ(n,a, r), 3.1 shows that it is cut out in G by a regular
section of Sa(S ∨). Various simple numerical invariants of the Fano scheme may then be determined
via Schubert calculus, as is done in [DM98, §§3–4] for classical complete intersections, and [Che25b,
1.13–1.15] and [Che24, 1.11–1.13] in the q-bic case. For now, record the fact that the dualizing
sheaf ωFr (X ) is a power of the Plücker line bundle OFr (X )(1):

3.12. Proposition. — If X ⊆ Pn is a (q;a)-tic scheme such that dimFr(X ) = δ(n,a, r), then

ωFr (X )
∼= OFr (X )(γ(a, r, q)− n− 1) where γ(a, r, q) ··=

1
r + 1

∑

a∈a
a(q) ·
∏

j≥0

�

a j + r
r

�

.

Proof. Duality theory, as in [Stacks, 0AU3], shows that the dualizing sheaf is given in this case by
ωFr (X )

∼=ωG|Fr (X ) ⊗ detSa(S ∨). Tensor product formulae show that, for a profile a =
∑

j≥0 a j t
j ,

detSa(S ∨) = det
�
⊗

j≥0
Syma j (S ∨)[ j]
�∼=
⊗

j≥0
det
�

Syma j (S ∨)
�⊗q j
∏

k≥0 (ak+r
r )/(

a j+r
r ).

Combined with fact that detSyma j (S ∨) is the
�a j+r

r+1

�

-th power of OFr (X )(1) gives the result. ■

3.13. r-planes through a point. — Let X ⊆ PV be a (q;a)-tic scheme and consider the scheme

Fr(X , x) ··= {[PU] ∈ Fr(X ) : x ∈ PU ⊆ X }

parameterizing r-planes in X through a given closed point x . As usual, this may be canonically
identified as the Fano scheme of (r − 1)-planes of a scheme X1,x ⊆ P(V/L), where L is the 1-
dimensional space underlying x and X1,x ··= F1(X , x) is the scheme of lines in X through x . A
classical fact, see [HRS04, §2] for example, is that if X ⊆ PV is a scheme defined by equations of
multi-degree d= (d1, d2, . . . , dc), then X1,x ⊆ P(V/L) is defined by equations of multi-degree

d1 ··= (d1, d1 − 1, . . . , 2, 1; d2, d2 − 1, . . . , 2, 1; . . . ; dc , dc − 1, . . . , 2, 1).

A generalization of this to (q;a)-tic schemes is as follows:

3.14. Proposition. — Let X ⊆ PV ∼= Pn be a (q; a)-tic scheme. For every closed point x ∈ X , the scheme
X1,x = F1(X , x) of lines in X through x is a (q;a1)-tic scheme in Pn−1, where

a1 ··= (b ∈ Prfl : 0≺ b ⪯ a with a ∈ a).

Proof. It is illustrative to work slightly more globally and to describe the scheme

X1 ··= {(x , [ℓ]) ∈ X × F1(X ) : x ∈ ℓ ⊆ X }

of pointed lines locally relative to X . Choose projective coordinates x ··= (x0 : · · · : xn) and defining
(q; a)-tic equations X = V( fa : a ∈ a). Over the standard affine open subscheme D(xn), the space of

https://stacks.math.columbia.edu/tag/0BMB
https://stacks.math.columbia.edu/tag/0AU3
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pointed lines in Pn restricts to a trivial Pn−1-bundle, and fibre coordinates y ··= (y0 : · · · : yn−1) may
be chosen so that the point (x,y) ∈ D(xn)× Pn−1 represents the line ℓ parameterized by

ϕ : P1→ Pn : (ξ : η) 7→ ξx+ηy ··= (ξx0 +ηy0 : · · · : ξxn−1 +ηyn−1 : ξxn).

Then ℓ ⊆ X if and only if ϕ∗( fa) = fa(ξx+ηy) = 0 for each a ∈ a. View fa(ξx+ηy) as a polynomial in
the auxiliary variables (ξ : η); its coefficients are polynomials fa,b(x;y) which provide the equations
for X1 in D(xn)× Pn−1, and have the following form:

3.15. Lemma. — Let fa(x0, . . . , xn) be a (q; a)-tic polynomial. Then there is a unique expansion

fa(ξx0 +ηy0, . . . ,ξxn−1 +ηyn−1,ξxn) =
∑

0⪯b⪯a
fa,b(x0, . . . , xn; y0, . . . , yn−1) · ξa(q)−b(q)ηb(q)

where the polynomials fa,b(x0, . . . , xn; y0, . . . , yn−1) are homogeneous of bi-profile (a− b, b).

Proof. When the profile a = a0 is a constant, this is classical: simply group terms with respect to the
monomials in ξ and η. For a general profile a = a0 + a1 t + · · ·+ am tm, note that fa(ξx+ ηy) is a
sum of polynomials of the form

∏m

j=0
fa j
(ξx+ηy)q

j
=
∏m

j=0

�∑a j

b j=0
fa j ,b j

(x;y) · ξa j−b jηb j
�q j

where the fa j
are homogeneous of degree a j, and fa j ,b j

is bihomogeneous of bidegree (a j − b j , b j).
The product expands to a sum of terms of the form

�∏m

j=0
fa j ,b j

(x;y)q
j
�

· ξa(q)−b(q)ηb(q)

which is a polynomial with profile b ··= b0+ b1 t + · · ·+ bm tm in y, and profile a− b in x. Injectivity of
the multiplication maps implies via 1.5 that any coefficient of ξa(q)−b(q)ηb(q) is of bi-profile (a− b, b),
from which the result follows. ■

To complete the proof of 3.14, observe that the bi-profile (a, 0) terms in 3.15 are fa,0(x,y) = fa(x)
simply the equations of X . Therefore, over X ∩D(xn), the polynomials fa,b(x;y) with 0≺ b ⪯ a and
a ∈ a present X1 as a (q;a1)-tic scheme in a projective (n− 1)-space. ■

Writing Fr(X , x)∼= Fr−1(X1,x) and combining 3.14 with 3.1 and 3.2 shows that a (q; a)-tic scheme
is covered by r-planes as soon as δ−(n−1,a1, r−1)≥ 0. A simple criterion for δ(n−1,a1, r−1)≥ 0
may be obtained by using the identity

1+
∑

0≺b⪯a

∏

j≥0

�

b j + r − 1
r − 1

�

=
∏

j≥0

�∑a j

b j=0

�

b j + r − 1
r − 1

�

�

=
∏

j≥0

�

a j + r
r

�

.

3.16. Corollary. — Let X ⊆ PV be a (q;a)-tic scheme. If

n≥max
�

2r − 1+#a1, r +
1
r

∑

a∈a

∏

j≥0

�

a j + r
r

�

−
1
r

#a
	

,

then X is covered by r-planes. ■

A more global version of 3.14 will be given in §5 and will feature in the unirationality construction
in Theorem B. The next section prepares for this by clarifying what a family of (q;a)-tic schemes
ought to be and by developing some tools for manipulating such families.
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4. FA M I L I E S

Consider a family X → S of complete intersections in a projective bundle π: PV → S over the
field k which is cut out by a regular section σ : OPV →E of a finite locally free OPV -module. What
additional structure should be required to elevateX into a family of (q; a)-tic complete intersections?
As a minimum, each fibre Xs ought to be a (q;a)-tic complete intersection in PVs, meaning as in 2.1
that the equations σs are induced by a (q; a)-tic tensor αs. This tensor is a crucial part of the structure
that defines a (q;a)-tic complete intersection, so one ought to ask that the αs vary continuously
across the family. The following examples illustrate some of the subtleties involved:

4.1. Example. — Fix a nonconstant profile a ··= a0 + a1 t + · · ·+ am tm ∈ Prfl, let S ··= A2 be the
affine plane with coordinates (s1, s2), and choose homogeneous polynomials f1, f2, g ∈ OS[x0, . . . , xn],
where f1 and f2 are general coprime (q; a)-tic polynomials and where g is simply general of degree
d ··= a(q). Consider the closed subscheme of Pn

S defined by the section

σ = ( f1 + s1 g, f2 + s2 g)∨ : OPn
S
→OPn

S
(d)⊕2.

Setting a ··= (d, a0+ a1 t + · · ·+ am tm), then X is a family of codimension 2 complete intersections in
Pn

S with the property that each fibre is a (q;a)-tic complete intersection, but there is no continuously
varying family of (q;a)-tic tensor defining X in a neighbourhood of the origin of S.

Proof. That each fibre is a (q; a)-tic complete intersection is straightforward: At a point s where si ̸= 0,
Xs is cut out by the equations fi + si g = s1 f2− s2 f1 = 0. Over the origin, X0 is cut out by f1 = f2 = 0,
and either choice of fi being considered as a (q; a)-tic equation suffices. Suppose now that U ⊆ S
is a neighbourhood of 0 over which X |U is defined in Pn

U by a family of (q;a)-tic tensors α(s). The
(q; a)-tic component of the tensor takes the form

α(s)a = x f1 + y f2 where x , y ∈ Γ (U ,OS) satisfies xs1 + ys2 = 0.

Thus y is divisible by s1 and x is divisible by s2, and so α(s)a vanishes at the origin, contradicting
the assumption that it provides the (q; a)-tic equation of X over all of U . ■

Excising the origin from the base ensures that a tensor does glue together to become a section of a
non-split vector bundle:

4.2. Example. — Take the base S ··= A2\{0} and continue with the exampleX ⊂ Pn
S of 4.1. Consider

the standard affine open cover given by the complement Ui ··= D(si) of the si-axis for i = 1, 2. Then

X |Ui
= V( fi + si g, s1 f2 − s2 f1) ⊂ Pn

Ui

is a presentation of X as a (q;a)-tic complete intersection over Ui . This presentation globalizes over
S in the following sense: Write Pn

S = P(OS ⊗ V ) for a vector space V , and consider for i = 1,2 the
map of locally free OUi

-modules

αi = ( fi + si g, s1 f2 − s2 f1)
∨ : OUi

→
�

OUi
⊗ Symd(V∨)
�

⊕
�

OUi
⊗ Sa(V∨)
�

.

These glue via the automorphism on the intersection U1,2 ··= U1 ∩ U2 given by

ϕ1,2 ··=
�

s2/s1 1/s1

0 1

�

∈ Aut
�

�

OU1,2
⊗ Symd(V∨)
�

⊕
�

OU1,2
⊗ Sa(V∨)
�

�

.

Thus there is a global section α: OS →A such that α|Ui
= αi , whereA fits in an extension

0→OS ⊗ Symd(V∨)→A →OS ⊗ Sa(V∨)→ 0.
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This tensor underlies X ⊂ Pn
S in the sense that the section σ defining X from 4.1 factors as

σ = ϵ ◦π∗α: OPn
S
→ π∗A →OPn

S
(d)⊕2

where ϵ is the surjective morphism of OPn
S
-modules locally induced by the maps

π∗ϵ|U1
=

�

1 0
s2/s1 1/s1

�

and π∗ϵ|U2
=

�

s1/s2 −1/s2

1 0

�

between (OUi
⊗k Symd(V∨))⊕ (OUi

⊗k Sa(V∨))→OUi
⊗k Symd(V∨)⊕2. Moreover, there is a change

of fibre coordinates of Pn
S in which ϵ is in fact locally induced by the evaluation map of π∗π∗OPn

S
(d).

Despite this, the extension in which A fits is nontrivial: Otherwise, projecting α to the Symd -
component provides a polynomial h cutting out X along with the equation s1 f2 − s2 f1. Comparing
generators of the ideal of X shows that h= x( f1 + s1 g) + y( f2 + s2 g) for some

x , y ∈ Γ (S,OS) = k[s1, s2] satisfying xs1 + ys2 ∈ Γ (S,OS)
× = k×.

This is impossible, and so the extension is non-split. ■

Toward a definition of a family of (q;a)-tic schemes, suppose one is given a section of the form

α: OS →
⊕

a∈a Sa(V ∨).

Adjunction along π: PV → S together with the relative evaluation maps induce a canonical map

σ ··= ϵ ◦π∗α: OPV →
⊕

a∈aπ
∗Sa(V ∨)→
⊕

a∈aOπ(a(q))

whose zero locus X ought to be called a family of (q;a)-tic schemes over S. However, there are
families like those in 4.2 whose defining section takes values in a vector bundle which is only locally
of this form. Additional data is therefore necessary to globalize this construction. The solution taken
here is to require a map ϵ globalizing the evaluation map.

4.3. Definitions. — A family of (q;a)-tic tensors valued in a finite locally free OS-module V is a
section α: OS →A , whereA is locally on S isomorphic to

⊕

a∈a Sa(V ∨).

A family of (q;a)-tic schemes in a projective bundle π: PV → S consists of the data of

– a closed subscheme X ⊆ PV cut out by a section σ : OPV →E of a vector bundle;
– a family of (q;a)-tic tensors α: OS →A ; and
– a surjective morphism ϵ : π∗A →E of OPV -modules.

These data are subject to the conditions that:

(i) there is a factorization σ = ϵ ◦π∗α: OPV → π∗A →E ; and
(ii) there exists an open cover S =

⋃

i∈I Ui on which the morphism ϵ : π∗A →E is isomorphic
to the canonical map induced by evaluation along π:

evπ :
⊕

a∈aπ
∗Sa(V ∨)→
⊕

a∈aOπ(a(q)).

When σ is a regular section making X → S fibrewise a complete intersection, furthermore call the
triple (X ,α,ϵ) a family of (q;a)-tic complete intersections. The family X → S is often referred to as
the family of (q;a)-tic schemes or complete intersections, leaving the α and ϵ implicit.
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4.4. Example. — Since (q;a)-tic structures are inherited upon passing to linear sections by 2.3,
families of linear sections of (q;a)-tic schemes provide a source of non-trivial examples. To give a
simple illustration, consider linear projection of a projective space PV centred along a subspace PU .
This provides a rational map to P(V/U) which is resolved on the blowup b : ePV → PV centred along
PU; as usual, b exhibits ePV as the projective bundle over P(V/U) whose underlying vector bundle V
canonically arises via the diagram of short exact sequences

0 OP(V/U) ⊗ U V OP(V/U)(−1) 0

0 OP(V/U) ⊗ U OP(V/U) ⊗ V OP(V/U) ⊗ V/U 0 .

If X ⊆ PV is a (q;a)-tic scheme not contained in PU , then its total transform X ··= b−1(X ) in ePV is a
family of (q; a)-tic schemes over S ··= P(V/U): Dualizing the inclusion V ⊆ OP(V/U)⊗ V and applying
the tensor functor Sa provides a restriction map

OP(V/U) ⊗ Sa(V∨)→ Sa(V ∨).

Mapping a (q;a)-tic tensor defining X along this provides a family of (q;a)-tic tensors α defining X .

4.5. — If, furthermore, PU ⊆ X , then its strict transform eX in ePV generally does not appear to carry
useful additional structure from the point of view of this article. For instance, consider the smooth
q-bic surface

X ··= { (x0 : x1 : x2 : x3) ∈ P3 : xq
0 x1 + x0 xq

1 + xq
2 x3 + x2 xq

3 = 0 } .

Projection from the line PU = (0 : x1 : 0 : x3) exhibits the strict transform eX as a family of degree q
plane curves, the general fibre of which is isomorphic to

C ··= { (y0 : y1 : y2) ∈ P2 : yq
0 + y1 yq−1

2 = 0 } ,

see [Che22, 2.5.3] for instance. In general, this equation does not belong to any proper subspace of
Symq(k⊕3) of the form Sa(k⊕3) for a ∈ Prfl of numerical degree q. This perhaps suggests that the
class of (q; a)-tic schemes is not sufficiently flexible. It would be useful to develop methods to handle
a larger class of schemes that includes irreducible components of (q;a)-tic schemes.

4.6. Transition functions. — Injectivity of multiplication maps associated with profiles from 1.1
together with condition 4.3(ii) implies that the map π∗ϵ :A → π∗E is an injection which locally on S
is isomorphic to the inclusion of (q; a)-tic polynomials amongst all polynomials of degree a(q), with a
ranging over profiles in a. This endowsA with some additional structure: Choose an open covering
S =
⋃

i∈I Ui and trivializations ofA and π∗E so that π∗ϵ|Ui
is the identified with the inclusion

⊕

a∈a Sa(V ∨)|Ui
⊆
⊕

a∈a Syma(q)(V ∨)|Ui
.

For each pair of indices i, j ∈ I , let ψi, j and ϕi, j be the transition functions ofA and π∗E with these
trivializations over Ui, j ··= Ui ∩ U j . Since E is locally a sum of the Oπ(a(q)), the ϕi, j are induced by
multiplication of polynomials; in particular, for a, b ∈ a, the (a, b)-component

(ϕi, j)a,b : Syma(q)(V ∨)|Ui, j
→ Symb(q)(V ∨)|Ui, j

is induced by multiplication by a polynomial fi, j,a,b of degree b(q)− a(q). SinceA is identified as a
subbundle of π∗E , this means that the map

(ψi, j)a,b : Sa(V ∨)|Ui, j
→ Sb(V ∨)|Ui, j

is also induced by multiplication by the same polynomial fi, j,a,b. Keeping track of profiles shows that
whether or not (ψi, j)a,b must vanish is related to the composite partial ordering⇝ from 1.4:

https://arxiv.org/pdf/2205.05273.pdf#subsection.2.5.3
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4.7. Lemma. — If (ψi, j)a,b ̸= 0, then a⇝ b. ■

As a simple though useful consequence, this provides a (q;a)-tic tensor α: OS → A with a
canonical decomposition into types. Namely, partition the collection a of profiles into

alin ··= {a ∈ a : a(t) = 1}, apow ··= {a ∈ a : a(0) = 0}, anlr ··= {a ∈ a : a(t) ̸= 1 and a(0) = 0}

those that are linear, those that are nonreduced, and those that are non-linear and reduced. The
linear and nonreduced components ofA give two canonical quotients:

4.8. Lemma. — Let X be a family of (q;a)-tic schemes in a projective bundle π: PV → S. There is a
canonical short exact sequence of locally free OS-modules

0→Anlr→A →Alin ⊕Apow→ 0

where, for each type ∈ {nlr, lin, pow},Atype is locally on S isomorphic to
⊕

a∈atype
Sa(V ∨). An analogous

and compatible exact sequence exists for E .

Proof. From 4.7 together with 1.3(i), it follows that (ψi, j)a,1 = 0 for each a ∈ a \ alin, meaning
that the local summands of the form V ∨ fit together as a quotient bundle A →Alin. Similarly, if
a ∈ a \ apow and b ∈ apow, then (ψi, j)a,b = 0 since profiles preceding a nonreduced profile must also
be nonreduced as observed in 1.3(iv). Hence the local summands indexed by apow also fit together
to form a quotientA →Apow. The latter argument also implies that all possible transition functions
betweenAlin andApow must vanish, from which the remaining conclusions follow. ■

Dually, 4.7 implies that equations whose profile is maximal for⇝ in a fit together into a subbundle
of A . One such class of maximal profiles are those a ∈ a with maximal coefficient sum a(1): see
1.3(ii). This is most useful when restricted toAnlr ̸= 0:

4.9. Lemma. — Let X be a family of (q;a)-tic schemes in a projective bundle π: PV → S. If anlr ̸=∅,
then there exists a nonzero subbundle of the form

Sa(V ∨)⊗M ⊆Anlr ⊆A

for some locally free OS-moduleM and some a ∈ anlr with maximal coefficient sum a(1). ■

The canonical type decomposition from 4.8 of a (q;a)-tic tensor allows one to sometimes perform
certain simplifications to the equations defining the family X . For instance—a construction which is
of course much more generally applicable to any family of projective schemes—the linear equations
may be used to cut out a projective subbundle containing X , thereby reducing the number of
equations to keep track of. Precisely:

4.10. Lemma. — Let X be a family of (q;a)-tic schemes in a projective bundle π: PV → S. There
exists a canonical subbundle PV ′ ⊆ PV containing X in which it is a family of (q;a \ alin)-tic schemes.

Proof. Let λ: E → Elin be the quotient from 4.8 in which the linear equations of X ⊆ PV take values
in, so that Elin

∼= Oπ(1)⊗π∗M for some locally free OS-moduleM of rank #alin. The subbundle
PV ′ ⊆ PV defined by σ ◦λ then contains X , in which it is a complete intersection cut out by the
induced section σ′ : OPV ′ →E ′ valued in the restriction of ker(λ) to PV ′.

To provide X with the structure of a family of (q;a \ alin)-tic schemes in PV ′, begin with its
(q;a)-tic tensor α: OS →A and evaluation map ϵ : π∗A →E with respect to PV . Since ϵ is locally
given by evaluation along π, the kernel

A0 ··= ker(π∗(λ ◦ ϵ):A →V ∨ ⊗M )
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is a subbundle ofA with the property that ϵ restricted to π∗A0 factors through ker(λ). Compose
this with the restriction map ker(λ)→E ′, push along π, and consider the OS-module

A ′ ··= image(A0→ π∗ ker(λ)→ π∗E ′).

Locally on S, the morphism defining the image is the composite
⊕

a∈a\alin
Sa(V ∨) ⊆
⊕

a∈a\alin
Syma(q)(V ∨)→

⊕

a∈a\alin
Syma(q)(V ′∨)

of inclusion (q; a)-tic subbundles followed by the restriction maps from V to V ′, which implies that
A ′ is locally a sum of the (q; a)-tic bundles Sa(V ′∨). To construct a (q;a′)-tic tensor valued inA ′,
consider the commutative diagram

A0 A ′ π∗E ′

A π∗E π∗(E|PV ′) .

⊆ ⊆

Composing the bottom row with α: OS →A yields the map π∗(σ|PV ′), which has vanishing linear
components, and so it factors through π∗E ′. Since A0 and A have the same image in π∗(E|PV ′),
the commutative diagram implies that this then lifts to the required map α′ : OS →A ′. ■

Perhaps a more interesting simplification is possible when the collection of profiles a = apow

consists only of nonreduced profiles, meaning that each equation of X over S is, geometrically, a
q-power. Upon adjoining suitable roots of the coefficients, it is possible to take q-th roots of all the
equations of X to obtain a scheme X ′ with multi-profile a/t ··= (a/t : a ∈ a):

4.11. Lemma. — Let X be a family of (q;a)-tic schemes with a= apow. Then there exists a family of
(q;a/t)-tic schemes X ′ and a universal homeomorphism X ′→X fitting in the commutative square

X ′ X

S S .Fr

Proof. Write FrPV /S : PV → PV [1] for the S-linear relative q-power Frobenius morphism: the mor-
phism which takes q-powers of the fibre coordinates and leaves coefficients fixed, induced by the
commutative diagram

PV PV [1] PV

S S

FrPV /S

π

Fr

π[1] π

Fr

where the right hand square witnesses PV [1] = PV ×S,Fr S. The main point now is that E admits a
descent along FrPV /S , meaning there is an OPV [1]-module E ′ which pulls back to E . To construct E ′,
adopt the notation from 4.6 so that

E|π−1(Ui)
∼=
⊕

a∈aOπ(a(q))|π−1(Ui).

That a = apow means that each Oπ(a(q)) is the pullback of Oπ[1](a(q)/q) along the relative Frobenius,
and so E admits Frobenius descents locally over S. As explained in 4.6, the transition functions of E
over Ui, j have (a, b)-components induced by multiplication by a polynomial:

fi, j,a,b : Oπ(a(q))|π−1(Ui. j)→Oπ(b(q))|π−1(Ui, j).

As in the proof of 4.8, multiplication by fi, j,a,b maps Sa(V ∨) to Sb(V ∨). Since a and b both have
vanishing constant term, if fi, j,a,b is nonzero, it also must have profile with vanishing constant term;
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in other words, each monomial appearing must be a q-power in the fibre coordinates. This means
that the fi, j,a,b admit Ui, j-linear Frobenius descents gi, j,a,b to PV [1]|Ui, j

. This glues the local Frobenius
descents to give an OPV [1]-module E ′ descending E along FrPV /S .

Pushing the canonical adjunction map E ′→ FrPV /S,∗ E along π[1] now yields an injection which is
locally given by the inclusion

⊕

a∈a Syma(q)/q(V [1],∨) ⊆
⊕

a∈a Syma(q)(V ∨).

Identifying the OS-moduleA in which the (q;a)-tic tensor α takes values locally as
⊕

a∈a Sa(V ∨)∼=
⊕

a∈a Sa/t(V [1],∨)

shows that the injection π∗ϵ factors as

π∗ϵ :A → π[1]∗ E
′→ π∗E .

Adjunction along π[1] thus provides a relative evaluation map ϵ′ : π[1],∗A → E ′ and the pullback
of α produces a section σ′ : OPV [1] → E ′: its vanishing locus X ′ ⊆ PV [1] is now the sought-after
(q;a/t)-tic scheme. ■

4.12. Planing. — An r-planing of a family X of (q;a)-tic schemes in π: PV → S is the data of a
closed subscheme P ··= PU ⊆X corresponding to a subbundleU ⊆ V of rank r+1; in other words,
P is a family of r-planes contained in X . The pair P ⊆ X is referred to as a family of r-planed
(q;a)-tic schemes over the base scheme S. Observe that an r-planing P of X may be transformed
into an r ′-planing for any 0≤ r ′ ≤ r upon base change to the Grassmannian bundle G(r ′+1,U )→ S
and taking the projective bundle on the tautological subbundle of rank r ′ + 1.

4.13. Classifying maps. — Let P ⊆X be an r-planed family of (q;a)-tic schemes in a Pn-bundle
over a base S. At least on open subsets of the base S, the family X and the pair P ⊆ X induce
classifying maps to the parameter spaces

(q;a)-ticsPn ··=
∏

a∈a
PSa(k⊕n+1) and

Incn,r,a ··= { ([U], [α]) ∈ G(r + 1, n+ 1)× (q;a)-ticsPn : PU ⊆ Xα } ,

encountered already in 2.7 and 3.2. To describe these, it is convenient to assume that S is integral,
so that the classifying maps may be seen as rational maps from S to one of the two parameter spaces;
often, such a rational map will stand in for a choice of classifying map constructed below.

Assume henceforth that the base scheme S is integral. For a nonempty open subscheme S◦ ⊆ S,
write V ◦, P ◦, and X ◦ for the restrictions of V , P , and X over S◦. Pick S◦ over which V ◦ is trivial
and ϵ may be identified with the evaluation map as in 4.3(ii). Fixing suitable trivializations identifies
X ◦ as a (q;a)-tic scheme in the projective space PV ◦ ∼= Pn × S◦ defined by a (q;a)-tic tensor

α◦ : OS◦ →
⊕

a∈a Sa(V ◦,∨).

This tensor defines a morphism S◦→ (q;a)-ticsPn and, together with P ◦, a morphism S◦→ Incn,r,a.
These are the classifying morphisms for the families X ◦ and P ◦ ⊆X ◦, respectively.

4.14. Generic families. — Different choices of trivialization produce classifying morphisms which
differ by automorphisms of the parameter spaces, so dominance of a classifying map does not depend
on any of the choices above; after all, dominance means informally that the family contains the
general member of the parameter space in question. By way of terminology, call the family P ⊆X
generic if the associated classifying map S ¹¹Ë Incn,r,a is dominant.

Genericity propagates along many constructions. As a first example, consider a family P ⊆ X
of r-planed (q;a)-tic schemes in which some of the equations of X are linear: that is, alin ≠ ∅ in
the notation of 4.8. Then P ⊆ X may be considered as a family in the smaller projective bundle
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PV ′ cut out by those linear equations, as in 4.10. Since an equation in a projective subspace may be
extended—in many ways!—to an equation in a larger ambient projective space, it is easy to convince
oneself that if P ⊆ X is generic as a family in PV , then it remains generic as a family in PV ′. A
more careful argument is given in the following:

4.15. Lemma. — Let P ⊆X be a generic family of r-planed (q;a)-tic schemes in π: PV → S over an
integral base. Suppose that there is a subbundle π′ : PV ′→ S containing X as a family of (q;a′)-tic
schemes where ∅ ̸= a′ ⊊ a and a \ a′ ⊆ alin. Then P ⊆X is also generic viewed as a family in PV ′.

Proof. It suffices to treat the universal case: Write Pn = PV , c ··= #a \ a′, and let

S ··= {s ∈ IncV,r,a : rankφs ≥ c} ⊆ G(r + 1, V )× (q;a′)-ticsPV ×
∏c

i=1
PV∨

be the open subscheme of the incidence correspondence where maximal rank is attained for the map

φ : OIncV,r,a
⊗k V →
⊕c

i=1
Li , whereLi ··= pr∗i OPV∨(1),

obtained by pulling back the evaluation maps OPV∨⊗V →OPV∨(1) from the c factors in the right-most
product. Thus the restriction P ⊆ X of the tautological family of r-planed (q;a)-tic schemes to
S is contained in the projective subbundle on V ′ ··= ker(φ|S) as a family of (q;a′)-tic schemes. To
construct a classifying map S ¹¹Ë IncV ′,r,a′ as in 4.13 to the parameter space of r-planed (q;a′)-tic
schemes in Pn−c = PV ′, choose an open subscheme S◦ ⊆ S on which V ′ is trivial. Dualizing the
composition

OS◦ ⊗ V ′ ∼= V ′|S◦ ⊆ OS◦ ⊗ V

of a trivialization with the inclusion induces a map which takes the tautological family of (q;a)-tic
tensors on V to a family of (q; a′)-tic tensors on V ′, and hence a morphism S◦→ IncV ′,r,a′ . It remains
to see that some such morphism is dominant.

Consider an explicit choice of S◦: Upon choosing coordinates Pn = PV , the map φ may be viewed
as a c × (n+ 1) matrix (ai, j), where the c linear equations defining X are given by

ℓi(x0, . . . , xn) = ai,0 x0 + · · ·+ ai,n xn for i = 1, . . . , c.

Let S◦ ⊆ S be the open subscheme on which the rightmost c × c minor of φ is non-vanishing. With a
suitable OS◦-linear change of coordinates, the linear equations ℓi may be transformed to

ℓi(x0, . . . , xn) = xn−c+i −
∑n−c

j=0
bi, j x j for i = 1, . . . , c

where the bi, j ∈ Γ (S◦,OS◦). This provides a splitting of the surjection φ|S◦; the corresponding
retraction provides a trivialization of V ′|S◦ identifying it with the first n− c + 1 summands of O ⊕n+1

S◦ ,
and the induced classifying morphism S◦→ IncV ′,r,a′ takes a (q;a)-tic tensor on Pn to that on Pn−c

obtained by eliminating the last c coordinates as prescribed by the linear equation ℓi . Described in
this way, it is straightforward that this classifying morphism is surjective: Consider, for example,
the closed subscheme T defined by bi, j = 0 for all 1 ≤ i ≤ c and 0 ≤ j ≤ n− c. Then any point of
IncV ′,r,a′ can be lifted to a point of T just by viewing the (q;a′)-tic tensor in n− c + 1 variables as a
(q; a′)-tic tensor in n+ 1 variables; then augment this to a (q;a)-tic tensor by taking into account the
linear equations ℓi . ■

5. H I G H LY TA N G E N T L I N E S

Lines tangent to order ≥ k to a projective scheme X ⊆ Pn may be parameterized by a scheme of
the form

Tank(X ) ··= {(x , [ℓ]) ∈ X ×G(2, n+ 1) : multx(ℓ∩ X )≥ k}.
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Familiar cases include: When k = 0, this is the restriction to X of the variety of pointed lines in Pn,
and is the projective bundle on T ··= TPn(−1)|X . When k = 1, this is the projectivized tangent bundle
of X . When X is a general hypersurface of degree d, it is well-known that the general fibre of the
projection Tank(X )→ X to the x-coordinate is a complete intersection of type (k− 1, k− 2, . . . , 2, 1)
in an (n− 1)-dimensional projective space.

If X is a general complete intersection of codimension c ≥ 2, Tank(X ) usually consists of several
components and will not fibre in complete intersections over X . Nonetheless, upon writing X as an
intersection H1 ∩ · · · ∩Hc of hypersurfaces Hi of degree di , each of the schemes

Tank(X ; Hi) ··= {(x ,ℓ) : multx(ℓ∩Hi)≥ k and ℓ ⊂ H j for 1≤ j ≤ c and j ̸= i},

parameterizing k-fold tangent lines to Hi and pointed lines in the remaining H j, are distinguished
components of Tank(X ) which project onto X with complete intersection general fibres. The aim of
this section is to make sense of this construction and structure for a family of (q;a)-tic schemes.

Rather than discussing Tank(X ) for general k, this section focuses on the case of particular
relevance, namely, k = d − 1 where d ··= deg X :

PenTa(X ) ··= Tand−1(X ) ··= {(x , [ℓ]) ∈ X ×G(2, n+ 1) : multx(ℓ∩ X )≥ d − 1}.

Lines parameterized by PenTa(X ) are called penultimate tangents. In words, this scheme of penulti-
mate tangents parameterizes pointed lines x ∈ ℓ ⊂ Pn such that either ℓ is contained in X or else
their intersection, viewed as a Cartier divisor on ℓ, is of the form ℓ∩ X = (d − 1)x + x ′ for a residual
point x ′ ∈ X . The interest in this case is that extracting the residual point often provides a rational
map res: PenTa(X ) ¹¹Ë X , which will be studied in §6.

5.1. Local situation. — When S = Speck and X ⊆ Pn is a (q;a)-tic scheme, the situation is easy
to describe explicitly. With the notation in the proof of 3.14, the scheme X1 of pointed lines in X is
defined over D(xn) ⊆ Pn as

X1|D(xn) = {(x,y) ∈ D(xn)× Pn−1 : fa,b(x;y) = 0 for a ∈ a and 0⪯ b ⪯ a}.

A point (x,y) ∈ D(xn)×Pn−1 corresponds to a parameterized line (ξ : η) 7→ ξx+ηy, so the point x is
the image of (1 : 0). Writing H ⊆ Pn for the hypersurface cut out by a (q; a)-tic defining polynomial
fa, the scheme Tank(H) of pointed lines tangent to H to order ≥ k is defined by fa,b(x;y) = 0 for
0⪯ b ⪯ a satisfying b(q)≤ k. Therefore, over X ∩D(xn), the scheme PenTa(X ; H) of penultimate
tangents may be obtained from X1 by omitting the two equations fa,a(x;y) = fa,a−1(x;y) = 0,
presenting it as a family of (q;a′)-tic where a′ ··= a1 \ (a, a− 1); this is most useful when a− 1 is a
nonzero profile, equivalently when the profile a is nonlinear and reduced.

The next few paragraphs make sense of these observations in families.

5.2. Pointed lines. — Given a projective bundle π: PV → S, write LV for its space of pointed
lines: namely, the incidence correspondence between it and its relative Grassmannian GV of lines.
Projection to the line exhibits LV as the universal line over GV , whereas projection prx : LV → PV
to the point identifies LV as the projective bundle on the relative tangent bundle Tπ ⊗Oπ(−1) of
π: PV → S. These moduli descriptions imply that the tautological bundles of LV fit into a canonical
short exact sequence

0→Oprx
(1)→S ∨→ pr∗x Oπ(1)→ 0

where S is the subbundle of rank 2. Pushing along prx yields the relative dual Euler sequence

0→ Ω1
π ⊗Oπ(1)→ π

∗V ∨→Oπ(1)→ 0.
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Consider now a family X of (q;a)-tic schemes in π: PV → S. Its space of pointed lines

X1 ··= {(x ,ℓ) ∈ X ×S F1(X /S) : x ∈ ℓ} ,→ LV |X

naturally embeds into the projective bundle on T ··= Tπ ⊗ Oπ(−1)|X in which it has a (q;a1)-tic
structure, globalizing 3.14:

5.3. Proposition. — Let X be a family of (q;a)-tic schemes in a projective bundle π: PV → S. Then
its space of pointed lines X1 admits a canonical (q;a1)-tic structure in ρ : PT →X , where

T ··= Tπ ⊗Oπ(−1)|X , a1 ··= (b ∈ Prfl : 0≺ b ⪯ a for a ∈ a), and A1 ··= ker(ϵ : π∗A →E )|X .

Proof. The task is to construct equations of X1 in PT and to provide them with a (q; a1)-tic structure
overX . First, the equations ofX1 in all of LV are the pullback of those of the Fano scheme F1(X /S)
in GV , and the latter are given by prℓ,∗ pr∗x σ, where prx and prℓ are the projections out of LV , and
σ : OPV →E are the equations of X in PV . Writing σ = ϵ ◦π∗α as in 4.3(i) provides a factorization

prℓ,∗ pr∗x σ : OG
γ∗α
−→ γ∗A

ϵ0−→ E0 ⊆ prℓ,∗ pr∗x E

where γ: GV → S is the structure map, and ϵ0 : γ∗A → E0 is a canonical map which is locally
isomorphic to a direct sum of the evaluation maps Sa(V ∨)→ Sa(S ∨), globalizing 3.1: this uses the
fact that prℓ,∗ pr∗x Oπ(d)

∼= Symd(S ∨), the local form of ϵ from 4.3(ii), and the assumption that the
multiplication map for (q;a)-tic tensors is injective. In summary, F1(X /S) is cut out in GV by the
section σ0 ··= ϵ0 ◦ γ∗α: OGV →E0, and so X1 is cut out in LV by the pullback pr∗

ℓ
σ0.

Next, consider the restriction of pr∗
ℓ
σ0 to PT : On the one hand, evaluation along prℓ provides a

canonical map ξ: pr∗
ℓ
E0 ⊆ pr∗

ℓ
prℓ,∗ pr∗x E → pr∗x E making the square

pr∗
ℓ
γ∗A pr∗x π

∗A

pr∗
ℓ
E0 pr∗x E

pr∗
ℓ
ϵ0 pr∗x ϵ

ξ

commute; in particular, this implies that pr∗x σ = ξ ◦ pr∗
ℓ
σ0. Locally, this is the sum of the canonical

surjections Sa(S ∨)→ pr∗x Oπ(a(q)) induced by applying Sa to the first exact sequence of 5.2. On the
other hand, PT = LV |X is cut out of LV by pr∗x σ. Together, this means that the restricted section
pr∗
ℓ
σ0|PT induces a map

σ1 : OPT →E1 ··= ker(ξ: pr∗ℓ E0→ pr∗x E )|PT .

which cuts out X1 in PT .
Finally, for the (q;a1)-tic structure, let A1 ··= ker(ϵ : π∗A → E )|X and observe that, since

σ = ϵ ◦π∗α vanishes on X , the restriction π∗α|X induces a map α1 : OX →A1. Pulling up along
ρ : PT →X , the composite

ρ∗A1 ⊆ pr∗x π
∗A|PT = pr∗ℓ γ

∗A|PT
pr∗
ℓ
ϵ0
−→ pr∗ℓ E0|PT

ξ
−→ pr∗x E|PT

vanishes since it is the restriction of pr∗x ϵ, and so it induces a canonical map ϵ1 : ρ∗A1→E1. Tracing
through the construction and using σ0 = ϵ0 ◦ γ∗α then shows that σ1 = ϵ1 ◦ρ∗α1.

It remains to describe the local structure of ϵ1. Begin with the open cover S =
⋃

i∈I Ui and
trivializations of ϵ provided by 4.3(ii). Refine the open cover given by the π−1(Ui) into an open
covering X =
⋃

j∈J Vj on which, additionally, the dual Euler sequence splits:

π∗V ∨|Vj
∼= T ∨|Vj

⊕Oπ(1)|Vj
.
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Fix such a choice for each j ∈ J . The restriction ofA1 to Vj is then isomorphic to
⊕

a∈a ker
�

Sa(T ∨ ⊕Oπ(1))→Oπ(a(q))
�

|Vj
∼=
⊕

a∈a

⊕

0≺b⪯a
Sb(T ∨)⊗Oπ(a(q)− b(q))|Vj

where the maps on the left are projection onto the Sa(Oπ(1)) = Oπ(a(q)) factor. Now choose over Vj

a splitting of the first exact sequence in 5.2 compatible with the evaluation map pr∗x π
∗V ∨→S ∨.

Over each Vj , the map ϵ1 : ρ∗A1→E1 is isomorphic to the sum of the evaluation maps

Sb(evρ)⊗ id: ρ∗Sb(T ∨)⊗Oπ(a(q)− b(q))→Oρ(b(q))⊗ρ∗Oπ(a(q)− b(q))

as a ranges over a and 0 ≺ b ⪯ a. This verifies that (X1,α1,ϵ1) indeed is a family of (q;a1)-tic
schemes in ρ : PT →X , as desired. ■

In light of the discussion in 5.1, it will be useful to describe how to access, within the bundle E1 of
equations for X1 in PT constructed in 5.3, those of degree a(q) and a(q)− 1, at least when X is a
family of (q; a)-tic hypersurfaces with a nonlinear and reduced:

5.4. Lemma. — Let X be a family of (q; a)-tic hypersurfaces where a(t) is nonlinear and reduced. The
degree a(q) and a(q)− 1 equations of the family X1 of (q;a1)-tic schemes in ρ : PT →X constructed
in 5.3 lie in a subbundle of the form S ∨ ⊗Oρ(a(q)− 1) ⊆ E1.

Proof. Since X is a family of (q; a)-tic hypersurfaces, up to twisting by line bundles from S, its
structure is given by a tensor α: OS → Sa(V ∨) and the evaluation map ϵ : π∗Sa(V ∨)→ Oπ(a(q)).
The construction of 5.3 then shows that the (q;a1)-tic polynomials defining X1 in ρ : PT →X take
values in the bundle

E1 = ker
�

Sa(S ∨)→ ρ∗Oπ(a(q))
�

where S ∨ denotes the tautological rank 2 subbundle on PT , and the morphism is the canonical
quotient that arises upon applying Sa to the short exact sequence of OPT -modules

0→Oρ(1)→S ∨→ ρ∗Oπ(1)→ 0

as in 5.2. The line subbundle Oρ(1) gives the fibre coordinates of ρ : PT →X , so the degree a(q)
and a(q)− 1 equations of X1 lie in the deepest rank 2 subbundle of E1 with respect to the filtration
obtained by applying Sa to the short exact sequence. Since

Sa(S ∨) = Syma0(S ∨)⊗
�⊗

j≥1
Syma j (S ∨)[ j]
�

,

this is the deepest rank 2 subbundle of Syma0(S ∨) twisted by the deepest line subbundle of each
Syma j (S ∨)[ j] for j ≥ 1. General facts about rank 2 bundles shows that this is

�

S ∨ ⊗Oρ(a0 − 1)
�

⊗
�⊗

j≥1
Oρ(a jq

j)
�

∼= S ∨ ⊗Oρ(a(q)− 1). ■

5.5. Penultimate tangents. — Let X be a family of (q;a)-tic schemes in π: PV → S, and let
X1 be its scheme of pointed lines equipped with its structure as a family of (q;a1)-tic schemes in
ρ : PT →X as constructed in 5.3. Assume that anlr ≠∅ and choose a subbundle Sa(V ∨)⊗M ⊆Anlr

as in 4.9. To perform the construction 5.1 in families, view the projective bundle µ: PM → S as the
linear system parameterizing (q; a)-tic hypersurfaces containingX corresponding to the equations of
Sa(V ∨)⊗M . On the product PT ×S PM , the chosen subbundle ofA together with the tautological
line subbundle Oµ(−1), and the computation of 5.4 distinguish subbundles

pr∗1 E1 ⊇ ker
�

Sa(S ∨)→ ρ∗Oπ(a(q))
�

⊠Oµ(−1) ⊇
�

S ∨ ⊗Oρ(a(q)− 1)
�

⊠Oµ(−1)

giving, respectively, the equations of the (q; a)-tic hypersurfaces parameterized by PM , and the
corresponding degree a(q) and a(q)− 1 equations of X1 ×S PM over PM . The composition

σ1 : O → E1 ··= pr∗1 E1/(S ∨ ⊗Oρ(a(q)− 1))⊠Oµ(−1)
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of pr∗1σ1 with the quotient map pr∗1 E1→E1 defines the desired component of penultimate tangents.
To keep notation consistent with what follows, assume additionally that there is given an r-planing
P ⊆X as in 4.12. Let

S′ ··=P ×S PM and PV ′ ··= PT ×X S′ = PT |P ×S PM

where the second projection π′ : PV ′ → S′ exhibits the fibre product as the projective bundle on
V ′ ··= ν∗(T |P )where ν: S′→P is the structure map. View PV ′ as a closed subscheme of PT ×S PM
and let σ′ : OPV ′ →E ′ be the restriction of the section σ1 above. The scheme of penultimate tangents
associated with X and the subbundle Sa(V ∨)⊗M over P is the vanishing locus

X ′ ··= PenTa(X ; Sa(V ∨)⊗M )|P ··= V(σ′ : OPV ′ →E ′) ⊆ PV ′

of the section σ′ in PV ′. All of this data fits into a commutative diagram of schemes

X1|P ×P S′ X ′ PV ′ S′

X1|P PT |P P X PV S .

⊆ ⊆
π′

pr1 ν

ρ
⊆ ⊆ π

The defining equations σ′ of X ′ are essentially a subset of the equations σ1 defining X1, whence
the containment relation in the top left. This relationship between X ′ and X1 further means that
the (q;a1)-tic structure on X1 induces a (q;a′)-tic structure on X ′:

5.6. Proposition. — In the above setting, the scheme X ′ of penultimate tangents admits the structure
of a family of (q;a′)-tic schemes in π′ : PV ′→ S′, where a′ ··= a1 \ (a, a− 1). ■

Proof. In describing the (q;a′)-tic structure of X ′, we may replace S by PM to simplify the setting
of 5.5 so as to assume that we have chosen a subbundle Sa(V ∨) ⊆A corresponding to a family of
(q; a)-tic hypersurfaces containing X . Thus S′ = P ⊆ X and PV ′ = PT |P . The preimage under
ϵ1 : ρ∗A1 → E1 of the rank 2 subbundle from 5.4 corresponding to the degree a(q) and a(q)− 1
equations of the chosen family of (q; a)-tic equations over X is the pullback of a subbundleB ⊆A1

which fits in an extension

0→ Sa(T ∨)→B → Sa−1(T ∨)⊗Oπ(1)→ 0

arising from the functor Sa applied to the relative dual Euler sequence in 5.2. Writing θ :A1→A 1

for the corresponding quotient, there is thus an induced map ϵ̄1 :A 1→E1. The final arguments of
5.3 may then be adapted to show that the maps

α′ ··= (θ ◦α1)|S′ : OS′ →A ′ ··=A 1|S′ and ϵ′ ··= ϵ̄1|PV ′ : π′∗A ′→E ′

define the (q;a′)-tic structure of X ′ in π′ : PV ′→ S′. ■

5.7. Induced planings. — LetX be a family of (q; a)-tic schemes in a projective bundle π: PV → S.
An r-planing P ⊆X induces a canonical (r − 1)-planing of the scheme X1|P of pointed lines over
P from 5.2: The twisted tangent bundle of P provides a rank r subbundle

TP ⊗Oπ(−1) ⊆ TPV ⊗Oπ(−1)|P = T |P

whose associated projective bundleP1 is contained inX1|P ; geometrically,P1 parameterizes pointed
lines (x ,ℓ) where ℓ ⊆ P . Any scheme X ′ of penultimate tangents over P as constructed in 5.5 also
inherits an (r − 1)-planing: simply set P ′ ··=P1 ×P S′ and observe that X1|P ×P S′ ⊆X ′.
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5.8. Genericity of the induced families. — The remainder of this section is concerned with
genericity properties of the families P1 ⊆X1|P of pointed lines over P , and P ′ ⊆X ′ of penultimate
tangents associated with a generic family, in the sense of 4.14, of r-planed (q; a)-tic schemes P ⊆X
over an integral base S. First, to see that the families P1 ⊆ X1|P and P ′ ⊆ X ′ are themselves
generic, consider the tautological situation over the incidence correspondence of r-planes and
(q;a)-tic schemes:

5.9. Lemma. — Let P ⊆X be the tautological family of r-planed (q; a)-tic schemes over the incidence
correspondence S ··= Incn,r,a. The classifying map

[P1 ⊆X1|P ]: P ¹¹Ë Incn−1,r−1,a1

for the associated family of pointed lines is dominant.

Proof. Consider the fibre of P ⊆X ⊆ Pn
S over a fixed closed point x ∈ Pn:

Px = {([U], [α]) ∈ Incn,r,a : x ∈ PU ⊆ Xα}.

There is a choice of classifying morphism whose domain of definition intersects Px , and such that its
restriction Ψ : Px ¹¹Ë Incn−1,r−1,a1

acts as ([U], [α]) 7→ ([U/L], [αx]), where x = PL and αx is the
(q;a1)-tic tensor constructed in 3.14 defining Xα,1,x in Pn−1 = P(V/L). Since Fr−1(Xαx

)∼= Fr(Xα, x)
as observed in 3.13, Ψ is dominant if and only if the map

{[α] ∈ (q;a)-ticsPn : x ∈ Xα} ¹¹Ë (q;a1)-ticsPn−1 : [α] 7→ [αx]

is dominant. This is a product of rational maps determined by the linear maps

{α ∈ Sa(V∨) : α|L = 0} →
⊕

0≺b⪯a
Sb((V/L)∨): α 7→ (αb)0≺b⪯a

where αb is the b-homogeneous component of α upon expansion at x . It is straightforward to see
from the computations of 3.14 and 3.15 that, upon choosing coordinates so that x = (0 : · · · : 0 : 1),
the αb are uniquely determined from α by the relation

α(x0, . . . , xn) =
∑

0≺b⪯a
αb(x0, . . . , xn−1) · xa(q)−b(q)

n .

Combined with 1.5, it follows that the map α 7→ (αb)0≺b⪯a is an isomorphism, and so the corre-
sponding map [α] 7→ [αx] on multi-projective spaces is dominant. ■

For an analogous statement for penultimate tangents, observe that the (q; a)-tic tensor α: OS →A
defining the tautological family X ⊆ Pn

S takes values in a split bundle of the form

A =
⊕

a∈a Sa(V ∨)

where V itself is a trivial OS-module of rank n+ 1. Choose a summand Sa(V ∨) ⊆A with nonlinear
and reduced profile a, apply the constructions of 5.5 and 5.7, and let P ′ ⊆ X ′ be the resulting
family of (r − 1)-planed (q;a′)-tic schemes, with a′ = a1 \ (a, a− 1), over S′ ··=P .

5.10. Lemma. — LetP ⊆X be the tautological family of r-planed (q; a)-tic schemes over the incidence
correspondence S ··= Incn,r,a. For any choice of subbundle Sa(V ∨) ⊆A above, the classifying map

[P ′ ⊆X ′]: S′ ¹¹Ë Incn−1,r−1,a′

for the associated family of penultimate tangents is dominant.

Proof. The classifying map factors as the dominant classifying map S′ ¹¹Ë Incn−1,r−1,a1
from 5.9,

followed by the morphism π: Incn−1,r−1,a1
→ Incn−1,r−1,a′ which projects out the profile a and a− 1
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components corresponding to the tensor of the chosen (q; a)-tic subbundle Sa(V ∨) ⊆ A . Writing
Pn−1 = PV , the fibres of π are isomorphic to bi-projective spaces of the form

π−1([U], [α′])∼= P(ker(Sa(V∨)→ Sa(U∨))× P(ker(Sa−1(V∨)→ Sa−1(U∨))

parameterizing the missing components of α′. Thus π is surjective, and the result follows. ■

Consider an arbitrary family P ⊆X of r-planed (q;a)-tic schemes over an integral base S. If the
family P ⊆X is generic in the sense of 4.14, then so too are the families P1 ⊆X1|P of pointed lines
over P with its structure from 5.3, and—whenever anlr ̸=∅—any family P ′ ⊆X ′ of penultimate
tangents as constructed in 5.5 and 5.6:

5.11. Proposition. — Let P ⊆X be a generic family of r-planed (q;a)-tic schemes.

(i) P1 ⊆X1|P is generic as a family of (r − 1)-planed (q;a1)-tic schemes.
(ii) If anlr ̸=∅, then any P ′ ⊆X ′ of is a generic family of (r − 1)-planed (q;a′)-tic schemes.

Proof. The family P ⊆X is locally on S the pull back via a classifying map of the tautological family
over Incn,r,a. The invariant construction of P1 ⊆X1|P from 5.3 and 5.7 means that it, too, is pulled
back from the corresponding construction over the tautological family, and so (i) follows from 5.9.

Assume now that anlr ̸=∅, choose a subbundle Sa(V ∨)⊗M ⊆A for some nonlinear and reduced
profile a, and let P ′ ⊆X ′ be the corresponding family of penultimate tangents over S′ =P ×S PM
as constructed in 5.5. The base change of the original family P ⊆ X to PM will remain generic,
so as in the proof of 5.6, replace S by PM to assume thatM ∼= OS and S′ =P . Then, once again,
locally over S, this family P ′ ⊆ X ′ is pulled back from the corresponding construction over the
incidence correspondence, and so (ii) follows from 5.10. ■

Combined with numerical assumptions on the ambient projective bundle dimension n and the
integer r, genericity of the family P ′ ⊆ X ′ yields geometric genericity properties of the families
X1|P →P and X ′→ S. The most useful for what follows is that whenever n is sufficiently large
depending on r and a, the general fibre of either family has its expected dimension:

5.12. Proposition. — Let P ⊆ X be a generic family of r-planed (q;a)-tic schemes in a Pn-bundle
over an integral base S. If

n≥max
�

2r − 1+#a1, r +
1
r

∑

a∈a

∏

j≥0

�

a j + r
r

�

−
1
r

#a
	

,

then the general fibre of X1|P →P is a (q;a1)-tic complete intersection in Pn−1. Similarly, the general
fibre of any family X ′→ S′ of penultimate tangents is a (q;a′)-tic complete intersection in Pn−1.

Proof. The hypothesis on n implies that n−1−#a1 ≥ 0, so the tautological family over (q; a1)-ticsPn−1

is generically a complete intersection. Since the classifying map P ¹¹Ë Incn−1,r−1,a1
is dominant

by 5.9, the result would follow if the projection Incn−1,r−1,a1
→ (q;a1)-ticsPn−1 were surjective. By

3.2(ii), this is the case whenever δ−(n− 1,a1, r − 1) ≥ 0, and this inequality is equivalent to the
hypothesis on n, as seen in 3.16. The same argument applies for penultimate tangents, using the facts
that S′ ¹¹Ë Incn−1,r−1,a′ is dominant by 5.11(ii) and that δ−(n−1,a′, r−1)≥ δ−(n−1,a1, r−1). ■

6. RE S I D U A L P O I N T M A P

As mentioned at the beginning of §5, extracting the residual point of intersection provides a
rational map from a scheme of penultimate lines back to the original projective scheme. The aim of
this section is to construct this rational map in the relative setting, for the family X ′ of penultimate
lines constructed in 5.5, and to study when the resulting map res: X ′ ¹¹ËX is dominant.
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To begin, let P ⊆X be a family of r-planed (q;a)-tic schemes in a projective bundle π: PV → S.
Assume that Anlr ̸= 0, choose a subbundle Sa(V ∨)⊗M ⊆ Anlr as in 4.9, and let X ′ → S′ be the
associated family of penultimate tangents as in 5.5. To give an explicit description of the residual
point map, represent geometric points of X ′ as quintuples (s, x ,ℓ, H, Y ) where

– s is a geometric point of S;
– x ∈ ℓ is a pointed line in PVs with x ∈ Ps;
– H is a (q; a)-tic hypersurface parameterized by the linear system PMs as in 5.4; and
– Y is the vanishing locus of the remaining equations so that Xs = Y ∩H is a presentation of
Xs as a (q;a)-tic scheme.

This data is subject to the conditions that ℓ ⊆ Y and

multx(ℓ∩H)≥ a(q)− 1.

Note H is not uniquely determined in this representation. However, any other H ′ representing the
same point of X ′ has equation differing from that of H by a (q; a)-tic polynomial in the ideal of Y .
In particular, since ℓ ⊆ Y , the multiplicity condition is well-posed. The residual point map is now
described, and constructed, as follows:

6.1. Proposition. — In the above setting, there exists a morphism over S

res: X ′ \ pr−1
1 (X1|P ) −→X

acting on geometric points as res(s, x ,ℓ, H, Y ) = ℓ∩H − (a(q)− 1)x ∈ Xs.

Proof. To construct this map globally, continue with the notation in 5.5, and observe that the section
pr∗1σ1 : OPV ′ → pr∗1 E1 defining X1 in PT pulled back to X ′ factors through a section

τ: OX ′ →
�

S ∨ ⊗Oρ(a(q)− 1)
�

⊠Oµ(−1).

Its value on a point (s, x ,ℓ, H, Y ) may be identified as the degree a(q) polynomial defining ℓ ∩ H.
Twisting down by Oρ(1−a(q))⊠Oµ(1) factors out the (a(q)−1)-fold zero at x ∈ ℓ∩H, at which point
τ may be viewed as a family of linear forms on lines in V . Composing τ with the wedge product
isomorphism S ∨ ∼= S ⊗Oρ(1)⊗ρ∗Oπ(1), which sends a linear form to its zero locus, yields a section

τ′ :
�

Oρ(−a(q))⊗ρ∗Oπ(1)
�

⊠Oµ(1) −→ pr∗1S

whose value at (s, x ,ℓ, H, Y ) is the zero locus of the linear form given by τ; in other words, this is the
residual point of intersection between ℓ and H. Including S into the pullback of V then provides
the map to X ⊆ PV . It is defined at points where τ′ does not vanish which, from the description,
are points where ℓ ⊆ H: this is the preimage of X1|P in X ′. ■

When the families X1|P →P and X ′→ S′ of pointed lines and penultimate tangents associated
with an r-planed filtered family P ⊆X of (q; a)-tic complete intersections are themselves generically
complete intersections, 6.1 provides a rational map res: X ′ ¹¹ËX which takes a penultimate tangent
to its residual point of intersection. The next goal is to show that res is dominant whenever r is
sufficiently large depending only on a. In the following statement, a property is said to hold fibrewise
in a family over S if the property holds upon restriction to each closed point of S.

6.2. Proposition. — Let P ⊆X be a family of r-planed (q; a)-tic complete intersections over a scheme
S. If the family X1 of pointed lines is of expected relative dimension over P fibrewise over S and

r ≥ r0(a) ··=
�∑

a∈a

∏

j≥0
(a j + 1)
�

− 2 ·#a− 1,
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then, for any associated familyX ′ of penultimate tangents, the residual point map res: X ′ ¹¹ËX exists
and is dominant fibrewise over S.

Begin with a few reductions: If anlr =∅, then the statement is empty and there is nothing to prove.
So assume otherwise and fix any family X ′ of penultimate tangents as constructed in 5.5. Using the
fact that the first projection X ×S PM →X is surjective, S may be replaced by the linear system
PM of hypersurfaces relative to which X ′ is constructed so as to assumeM = OS and X ′ is a family
over S′ = P . Since, fibrewise over S, X ′ is obtained from X1 by omitting two relatively ample
divisors over their common base P , the hypothesis that X1 is of expected dimension implies that X ′

is also of expected dimension. This guarantees, via 6.1, that the residual point map res: X ′ ¹¹ËX
exists, and even that its indeterminacy locus does not contain any fibre over S. Given this, since the
statement is fibrewise over S, it suffices to consider the absolute case over Speck.

For the remainder of the proof, then, let P ⊆ X be an r-planed (q;a)-tic complete intersection in
Pn over k. Write a= (a1, . . . , ac) and fix a presentation of the form

X = H1 ∩ · · · ∩Hc where Hi is a (q; ai)-tic hypersurface.

Perhaps after reordering, assume that a1 ∈ Prfl is nonlinear and reduced, and let X ′ be the scheme
of penultimate tangents with respect to H1.

For each point y ∈ X \ P, consider the closed subscheme of P given by

Zy ··= {z ∈ P : multz(ℓy,z ∩H1)≥ a1(q)− 1 and ℓy,z ⊂ Hi for 2≤ i ≤ c}

where ℓy,z is the line between y and z. The task is to show that the open subscheme Z◦y ⊆ Zy

parameterizing lines intersecting H1 at z with multiplicity exactly a1(q)− 1 is nonempty for general
y . Toward this, observe that:

6.3. Lemma. — If Z◦y =∅, then ℓy,z ⊆ X for every z ∈ Zy .

Proof. Emptiness of Z◦y means ℓy,z intersects H1 with multiplicity at least a1(q) at z. Since ℓy,z also
intersects H1 at y , ℓy,z must be contained in H1, whence also X . ■

Equations for Zy are simple to describe, and yield the following dimension estimate:

6.4. Lemma. — dim Zy ≥ r − r0(a) for all y ∈ X \ P.

Proof. Write Py ··= 〈y, P〉 for the (r + 1)-plane spanned by y and the r-plane P, and view linear
projection in Py centred at y as a rational map Py ¹¹Ë P to identify P with the space of lines in Py

through y . This is resolved into a morphism a : ePy → P on the blowup of Py at y . As is standard, a
exhibits ePy as the projective bundle on

E ∼= OP ⊕OP(−1) ⊆ OP ⊗H0(Py ,OPy
(1))∨

where OP corresponds to the point y ∈ Py and OP(−1) is the tautological line subbundle in the
subspace corresponding to P ⊂ Py .

Each of the linear sections Hi,y ··= Hi ∩ Py is a (q; ai)-tic hypersurface in Py = Pr+1 by 2.3. As
in 4.4, the total transforms b−1(Hi,y) are then families of (q; ai)-tic hypersurfaces over P whose
equations in ePy correspond to a section

σi : OP → Sai (E∨)∼=
⊗mi

j=0
Symai, j (OP ⊕OP(q

j)).

Each line bundle summand corresponds to a coefficient of the equation of Hi,y restricted to the
line ℓy,z = PEz as a function of z ∈ P; thus Zi,y ··= V(σi) parameterizes points z ∈ P for which
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ℓy.z ⊂ Hi,y . Observe that some components of σi vanish for a priori reasons: Write ξ and η for local
fibre coordinates of PE so that ξ= 0 and η= 0 define the points z and y on ℓy,z = PEz. Since ℓy,z

intersects Hi,y at both y and z, the coefficients of ξai(q) and ηai(q) vanish, and so

codim(Zi,y ⊆ P)≤ rankSai (E∨)− 2=
∏mi

j=0
(ai, j + 1)− 2.

The condition on H1,y requires only that ℓy,z intersect it at z with multiplicity a1(q)− 1, meaning
that the scheme of interest is, rather than Z1,y , the potentially larger locus

Z ′1,y
··= {z ∈ P : multz(ℓy,z ∩H1,y)≥ a1(q)− 1}.

This is cut out by the vanishing of all components ofσ1 other than that corresponding to the coefficient
of ξa1(q)−1η. Combined with the above, this shows that the codimension of Z ′1,y in P is at most
rankSa1(E∨)− 3. Since Zy = Z ′1,y ∩ Z2,y ∩ · · · ∩ Zc,y , the codimension estimates give

dim Zy = dim P − codim(Zy ⊆ P)

≥ dim P − codim(Z ′1,y ⊆ P)−
∑c

i=2
codim(Zi,y ⊆ P)

≥ r + 2c + 1−
∑c

i=1

∏mi

j=0
(ai, j + 1) = r − r0(a). ■

Proof of 6.2. Comparing the numerical hypothesis with 6.4 shows that Zy is nonempty for every
y ∈ X \ P. Suppose, however, that Z◦y =∅ for general y ∈ X \ P. Derive a contradiction by estimating
the dimension of X1|P in two ways: On the one hand, it has its expected dimension by assumption;
viewing X1 as the universal line over the Fano scheme F1(X ) and using 3.1, this is

dim X1|P = (dimF1(X ) + 1)− dim X + dim P = n+ c + r − 1−
∑c

i=1

∏mi

j=0
(ai, j + 1).

On the other hand, emptiness of Z◦y together with 6.3 gives a morphism

{(y, z) ∈ (X \ P)× P : z ∈ Zy} → X1|P : (y, z) 7→ (z, [ℓy,z]).

Fibres of this map are contained in the points of the lines ℓy,z and so have dimension at most 1.
Combined with the dimension estimate 6.4, this gives

dim X1|P ≥ dim X + dim Zy − 1≥ n+ c + r −
∑c

i=1

∏mi

j=0
(ai, j + 1).

Comparing the two quantities yields a contradiction. Therefore Z◦y ̸=∅ for general y ∈ X , and this
means that the residual point map res: X ′ ¹¹Ë X is dominant. ■

7. UN I R AT I O N A L I T Y

The goal of this section is to establish Theorem B, showing that general (q;a)-tic complete
intersection is unirational once its dimension is sufficiently large, depending only on the multi-profile
a. The proof proceeds by inductively simplifying the equations of the tautological family of (q;a)-tic
complete intersections via the constructions of §§4–6. Induction takes place over the set Π of all
multi-profiles equipped with a somewhat complicated partial ordering; the ordering is designed to
keep track of the multi-profiles that appear after passing to one of the following three constructions:
Frobenius descent as in 4.11; removing linear equations as in 4.10; and passing to the family of
penultimate tangents as in 5.6.
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7.1. Ordering multi-profiles. — Let Π be the set of all multi-profiles, and consider the relation ⪯Π

defined as follows: The cover relations a′ ≺·Π a for this relation come in three flavours, depending on
which parts of the canonical type decomposition from 4.8 are present:

(i) If a= apow, then set a′ ··= a/t ··= (a/t : a ∈ a).
(ii) If a= alin ⊔ apow and alin ̸=∅, then set a′ ··= a \ alin.

(iii) If anlr ̸=∅, then let a0 ∈ anlr be any element with maximal coefficient sum a0(1), and set

a′ ··= (b ∈ Prfl : 0≺ b ⪯ a for a ∈ a) \ (a0, a0 − 1).

In general, two multi-profiles satisfy a′ ⪯Π a if and only if a′ = a or else they are connected by a
finite sequence of the above cover relations:

a′ = an ≺·Π an−1 ≺·Π · · · ≺·Π a1 ≺·Π a0 = a.

7.2. Examples. — The following are a few examples illustrating properties of the poset (Π,⪯Π):

(i) If a(t) = d is a constant, then the interval [∅, d]Π between ∅ and d is totally ordered.
Explicitly, the Hasse diagrams for 3≤ d ≤ 5 take the form:

(3)− (1)−∅, (4)− (2, 1)− (1)−∅, (5)− (3, 2,1)− (2, 1,1, 1)− (1,1, 1)−∅.

To depict the Hasse diagram for d = 6, write km for the profile k appearing m times:

(6)− (4,3, 2,1)− (3, 23, 14)− (23, 18)− (22, 110)− (2,111)− (111)−∅.

(ii) The Hasse diagram for the interval [∅, 1+ t]Π is: (1+ t)− (1)−∅.
(iii) The cover relation 7.1(i) appears in the Hasse diagram for [∅, 1+ 2t]Π:

(1+ 2t)− (1+ t, t, 1)− (t, 1, 1)− (t)− (1)−∅.

(iv) Consider the multi-profile a ··= ((q + 1)t + 1, t2 + (q + 1)) of ⊑-incomparable profiles of
numerical degree q2 + q + 1 from 1.3(iii). Specializing to q = 2, the two multi-profiles
covered by a via the relation 7.1(iii) are obtained from

a1 = (3t + 1,3t, 2t + 1,2t, t + 1, t, 1)∪ (t2 + 3, t2 + 2, t2 + 1, t2, 3, 2, 1)

by omitting either (3t + 1, 3t) or else (t2 + 3, t2 + 2).
(v) By considering a slight variant of (iv), it is possible to see that lengths of paths from a to ∅

need not be the same. For instance, this can be seen with the pair a = ((q+2)t+1, t2+(2q+1))
of ⊑-incomparable profiles of numerical degree q2 + 2q+ 1.

(vi) Maximal coefficient sums in a multi-profile does not necessarily drop along a cover relation
of the form 7.1(iii). This is because the maximum may be achieved by a member of apow.
For example, consider the Hasse diagram for a= (2,3t):

(2,3t)− (3t)− (3)− (1)−∅.

7.3. An invariant. — Basic properties of (Π,⪯Π) require some effort to establish since, for example,
multi-profiles may grow bigger along the cover relations defined in 7.1 and maximal coefficient sums
of profiles does not necessarily decrease along ⪯Π as in 7.2(vi). To address these difficulties, consider
the three integer-valued functions

δ(a) ··=max{degt a(t) : a ∈ a}, σ(a) ··=max{a(1) : a ∈ anlr}, µ(a) ··= #{a ∈ anlr : a(1) = µnlr(a)},

where the maximum of an empty set is 0. Define φ : Π→ Z4
≥0 by φ(a) ··= (δ(a),σ(a),µ(a), #anlr). A

case analysis shows that

if a′ ≺·Π a is a cover relation in Π, then φ(a′)<lex φ(a),
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where <lex is the lexicographical ordering on Z4
≥0. Thus this invariant provides a relation preserving

function φ : (Π,⪯Π)→ (Z4
≥0,≤lex). This makes it possible to establish the basic properties of ⪯Π:

7.4. Lemma. — ⪯Π defines a partial ordering on Π with a unique bottom element ∅ ∈ Π.

Proof. To see that ⪯Π is a partial ordering, it remains to establish antisymmetry. Assume a⪯Π b and
b⪯Π a. Since (Z4

≥0,≤lex) is itself a poset, 7.3 implies φ(a) = φ(b). But then the sequence of cover
relations witnessing a⪯Π b must be empty, since would φ strictly decrease along each step, so a = b.

Since nothing can precede ∅ in ⪯Π, the remaining statement is that ∅ can be reached from any
multi-profile a through a finite sequence of cover relations. Since the invariant φ(a) is a sequence
of nonnegative integers and lexicographically strictly decreases along each cover relation, it must
eventually reach (0, 0,0, 0) after finitely many steps. But φ−1(0,0, 0,0) = {∅}, so ∅⪯Π a. ■

7.5. Lemma. — For any a ∈ Π, the interval [∅,a]Π ··= {a′ ∈ Π :∅⪯Π a′ ⪯Π a} is finite.

Proof. Since ⪯Π is locally finite by construction, it suffices to see that the length of any path from
a down to ∅ is bounded. Proceed by induction on φ(a) ∈ Z4

≥0 ordered lexicographically. The base
case is φ(∅) = (0,0,0,0), in which there is nothing to prove. Given a nonzero (δ,σ,µ,λ) ∈ Z4

≥0,
inductively assume that for every multi-profile a′ with φ(a′)<lex (δ,σ,µ,λ), there exists an integer
L = L(a′) such that any sequence of cover relations between a′ and ∅ has length at most L. Consider
a multi-profile a ∈ φ−1(δ,σ,µ,λ) and consider three cases:

Suppose that σ = 0, so that anlr =∅. In the case δ = 0, then a = anlr and a single cover relation of
type 7.1(ii) brings a to ∅. If δ > 0, then any path from a to ∅ begins with a step of the relation 7.1(i).
This produces a new multi-profile a′ with δ(a′) = δ− 1< δ and so induction applies. Therefore, in
this case, any path from a to ∅ has length at most L(a) ··= L(a′) + 1.

If σ ≠ 0, then any sequence of cover relations from a down to ∅ begins with the relation 7.1(iii).
Each of the µ choices for applying this relation leads to a multi-profile a′ with a lexicographically
smaller φ(a′). Taking L′ to be the maximum over these a′ of the bounds L(a′) provided by induction,
any path from a to ∅ is bounded by L(a) ··= L′ + 1 cover relations. This concludes the induction. ■

7.6. Numbers. — Inductively define numerical functions on the poset (Π,⪯Π) as follows: Let r ≥ 0
be an integer and a be a multi-profile. Assuming that anlr ̸=∅, define

r(a) ··=max{r0(a)} ∪ {r(a′) + 1 : a′ ≺·Π a},

n1(a, r) ··=max{2r − 1+#a1} ∪ {n1(a
′, r − 1) + 1 : a′ ≺·Π a}, and

n2(a, r) ··=max
¦

�

r +
1
r

∑

a∈a

∏

j≥0

�

a j + r
r

�

−
1
r

#a
�

©

∪ {n2(a
′, r − 1) + 1 : a′ ≺·Π a},

where r0(a) is defined in 6.2, a′ in the second set ranges over elements of Π covered by a as in 7.1,
and ⌈·⌉ denotes the ceiling function. One may verify that n1(a, r) ≤ n2(a, r) unless a = (2tk)∪ a′

where a′ consist of profiles of the form tm. In the case that anlr =∅, define

r(a) ··=max{r0(a)} ∪ {r(a′) : a′ ≺·Π a},

n1(a, r) ··=max{2r − 1+#a1} ∪ {n1(a
′, r) : a′ ≺·Π a}, and

n2(a, r) ··=max
¦

�

r +
1
r

∑

a∈a

∏

j≥0

�

a j + r
r

�

−
1
r

#a
�

©

∪ {n2(a
′, r) : a′ ≺·Π a},

where the notation is as before. Here, there is precisely one multi-profile a′ covered by a, and a direct
computation shows that r0(a) = r0(a′), and hence r(a) = r(a′), and also ni(a′, r) = ni(a, r)−#alin
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for i = 1, 2. Finally, for all a ∈ Π and r ≥ 0, define

n0(a, r) ··=max{n1(a, r), n2(a, r)}

With these, it is possible to formulate the precise unirationality result:

7.7. Proposition. — Let P ⊆X be a generic family of r-planed (q;a)-tic complete intersections in a
Pn-bundle over an integral base scheme S with r ≥ r(a). If n ≥ n0(a, r), then the general fibre of X
over S is unirational.

Proof. Proceed by induction on a along the poset (Π,⪯Π). The base case is when a =∅, in which case
X = PV and each fibre over S is even rational. Let a ̸=∅ and inductively assume that the conclusion
holds for all multi-profiles preceding it in Π. The task is to construct a new generic r ′-planed family
P ′ ⊆X ′ of (q;a′)-tic complete intersections in a Pn′-bundle over an integral base S′ with a′ ≺Π a,
r ′ ≥ r(a′), n′ ≥ n0(a′, r ′), and all fitting into a commutative diagram of the form

X ′ X

S′ S

where the horizontal maps are dominant. Induction would then give the result since ∅ is the unique
bottom element by 7.4 and the interval [∅,a]Π is finite by 7.5. Decompose the multi-profile as
a= alin ⊔ apow ⊔ anlr into types as in 4.8, and proceed depending on which types are present:

If anlr ̸= ∅, apply 4.9 to choose a nonzero subbundle Sa0(V ∨)⊗M ⊆ Anlr where a0 ∈ anlr has
maximal coefficient sum a0(1). Applying the penultimate line constructions of 5.5, 5.6, and 5.7
provides a family of (r − 1)-planed (q;a′)-tic schemes in a Pn−1-bundle over P ×S PM , where

a′ = (a′ ∈ Prfl : 0≺ a′ ⪯ a for a ∈ a) \ (a0, a0 − 1).

This family is generic by 5.11. The choice of n together with 5.12 provide a nonempty open subscheme
S′ ⊆ P ×S PM over which the family P ′ ⊆ X ′ is a (q;a′)-tic complete intersection. The residual
point map res: X ′ ¹¹ËX from 6.1 exists and is dominant by 6.2 and the choice of r, providing the
sought after rational map over the dominant map S′ → S. The choice of numbers in 7.6 implies
r ′ = r − 1≥ r(a′) and n′ = n− 1≥ n0(a′, r ′), completing the induction in this case.

If anlr =∅ and alin ̸=∅, then apply 4.10 to viewP ⊆X as a family of r-planed (q; a′)-tic complete
intersections in a projective subbundle PV ′ ⊆ PV where a′ ··= a \ alin. Thus X ′ = X and S′ = S,
but X ′ is equipped with the structure of a (q;a′)-tic complete intersection in a different projective
bundle. By 4.15, the family P ⊆X is also generic with this structure. Now

r ′ = r ≥ r(a) = r(a′) and n′ = n−#alin ≥ n0(a, r)−#alin = n0(a
′, r ′),

completing the inductive step here.
Finally, if a = apow, apply 4.11 to obtain a family X ′ of (q;a′)-tic complete intersections in a

Pn-bundle over S′ = S with a′ ··= a/t and fitting into a diagram

X ′ X

S SFr

where the horizontal map up top is a universal homeomorphism. Pulling back the family P of
r-planes equips X ′ with a family of r-planes. It is straightforward to check that genericity of the
family P ⊆X propagates to genericity of P ′ ⊆X ′. Since r ′ ··= r and n′ ··= n, but also r(a) = r(a/t)
and n0(a, r) = n0(a/t, r), the inductive step is settled in this case too. ■
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Proof of Theorem B. Given a multi-profile a, set

r ··= r(a) and n ··= n0(a) ··= n0(a, r)

where r(a) and n0(a, r) are as in 7.6. Consider the incidence correspondence

Incn,r,a ··= {([U], [α]) ∈ G(r + 1, n+ 1)× (q;a)-ticsPn : PU ⊆ Xα}

between r-planes and (q;a)-tic schemes in Pn. This is a projective bundle over the Grassmannian
via the first projection, and so it is integral. Let S ⊆ Incn,r,a be the open subscheme parameterizing
r-planed (q;a)-tic complete intersections P ⊆ X . Restricting the tautological family to S therefore
provides a family P ⊆X of r-planed (q; a)-tic complete intersections in Pn

S satisfying the hypotheses
of 7.7. Therefore each fibre of X → S is unirational. Since the choice of n and r imply, via 3.16,
that the projection S→ (q;a)-ticsPn is dominant and the result follows. ■

7.8. Example. — The bound n0(a) may be computed for small multi-profiles a. Some examples:

n0(t + 1) = 4, n0(2, t + 1) = 9, n0(t + 1, t + 1) = 13, n0(t
2 + t + 1) = 48.

The bounds obtained for constant profiles a(t) = d, corresponding to degree d hypersurfaces as in
2.2(i), are surprisingly small:

n0(3) = 4, n0(4) = 9, n0(5) = 22, n0(6) = 160, n0(7) = 20376,

n0(8) = 11914188890, n0(9) = 8616199237736295920955120,

and n0(10) = 192884152577980851363553858004926940342106493833715693762179 ≈ 1059.
In comparison, the best bounds n′0(d) for the classical unirationality construction are from [Ram90],
and they give

n′0(3) = 3, n′0(4) = 20, n′0(5) = 8855, n′0(6) = 454205040715033146,

n′0(7)≈ 10103, n′0(8)≈ 10717, n′0(9)≈ 105738, n′0(10)≈ 1051641.

Asymptotically, n0(d) grows quite a bit slower than n′0(d); details shall appear elsewhere.
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