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ABsTRACT. We show that the Deligne-Mumford moduli space of stable curves is
projective over Spec(Z). We follow a method of Kollar. Ampleness of a line bundle is
deduced from nefness of a related vector bundle via the Ampleness Lemma, a classifying
map construction. The main positivity result concerns the pushforward of relative
dualizing sheaves on families of stable curves over a smooth projective curve.
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INTRODUCTION

We prove that the moduli stack %g of stable curves of genus g > 2 is projective over
Spec(Z) in the following sense; see Theorem 7.2:

Theorem. The Deligne—-Mumford moduli space Mg of stable curves of genus g > 2 is a
projective scheme over Spec(Z).

In particular, this means that Mg, which is a priori but an algebraic space, is actually a
projective scheme over Z. Together with the work of Deligne-Mumford [DM69] (see also
Theorem 0E9C) this means that Mg is actually an irreducible smooth projective scheme
over Z.

Our proof follows a method due to Kollar in [Kolgo]. Specifically, the task of showing
that a certain line bundle on Mg is ample is transferred, via Kolldr’s Ampleness Lemma,
to the problem of showing that a related vector bundle is nef on Mg. Since nefness is
a condition that only depends on the behaviour of the vector bundle upon restriction
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to curves, projectivity is thus reduced to a problem regarding positivity of 1-parameter
families of stable curves.

Kollar’s method differs from other existing proofs of projectivity of Mg in at least two
main ways: First, the technique is independent of the methods of Geometric Invariant
Theory, on which the proofs of [Mum77, Gie82, Corg3] rely. Second, Kollar’s criterion
does not require one to directly check that a line bundle on the moduli space is ample,
in contrast to the approach of Knudsen—-Mumford [KM76, Knu83a, Knu83b]; rather, one
only needs to show that some vector bundle on the moduli space is nef. As such, this
method has since been used in other settings, such as in the moduli of weighted stable
curves [Haso3], of stable varieties [KP17], and, recently, of K-polystable Fano varieties
[CP21, XZ20].

An outline of this article is as follows. We set up notation in regards to the moduli
of curves in §1, after which, we begin in §§2—4 with some material on positivity of
sheaves. In §5, we explain Kollar’'s Ampleness Lemma, see Proposition 5.5. In §6, we
prove the main positivity statement: the pushforward of the relative dualizing sheaf of a
1-parameter family of stable curves of genus at least 2 is nef, see Theorem 6.10. Finally,
we put everything together in §7 to show that Mg is projective over Z when g > 2.

Conventions. Throughout, k will denote a field. Following the conventions of the Stacks
Project, a variety is a separated integral scheme of finite type over a field k and a curve is
a variety of dimension 1, see Definitions 020D and 0A23. Given a scheme X over k and a
sheaf & of Ox-modules, we write

hi(X,Z):=dim (H'(X,Z)) forallieZ.

We use the Stacks Project [Sta21] as the main technical reference. Results therein are
referred to via their four character alphanumeric tags.

1.STABLE CURVES

In this section, we record the definition of the moduli problem with which we are
primarily interested, namely that of the moduli space of stable curves. The main
references are [DM69] and Chapter oDMG.

First we define what we mean by a family of curves. Compare the following with
Situation 0D4Z, and with Definitions 0C47, 0oCsA, and oE75. We diverge slightly from
the Stacks Project in that we require our families of nodal curves to have geometrically
connected fibres. Caution: the closed fibres of a family of nodal curves are not curves in
the sense of our conventions, as they may be reducible. See Section 0oCs8 for a discussion
on such terminology.

Definition 1.1. Let S be a scheme.

(i) A family of nodal curves over S is a flat, proper, finitely presented morphism of
schemes f: X — S of relative dimension 1 such that all geometric fibres are
connected and smooth except at possibly finitely many nodes.

(ii) A family of stable curves over S is a family of nodal curves such that the geometric
fibres of have arithmetic genus > 2 and do not contain rational tails or bridges.

(iii) A family of stable curves over S is said to have genus g if all geometric fibres have
genus g.
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The stability condition on families of curves is equivalent to ampleness of the dualizing
sheaf, and also finiteness of automorphism groups. See Section oE73 for details. For the
following, see Definition oE77.

Definition 1.2. For g > 2, the moduli stack of stable curves of genus g is the category ]g
fibred in groupoids whose category of sections over a scheme S consists of families of
stable curves of genus g over S.

The stack %g is a smooth, proper Deligne-Mumford stack over Spec(Z), see Theorem
0E9C. Classically, and in many geometric applications such as [HM82], it is convenient to
work with a space rather than the stack. As such, it is useful to extract an algebraic space
which is, in some sense, the closest approximation of the stack, obtained by “forgetting”
the automorphism groups: this is the notion of a uniform categorical moduli space or
simply a moduli space of a stack, see Definition oDUG.

Lemma 1.3. The stack %g admits a uniform categorical moduli space f, : %g — Mg such
that f, is separated, quasi-compact, and a universal homeomorphism.

Proof. The stack ]g has finite inertia by Lemmas oE7A and oDSW, so the existence of
f, follows from the Keel-Mori Theorem oDUT. [ |

Definition 1.4. The space Mg is the moduli space of curves of genus g.

Our primary goal is to show that Mg is projective over Z, see Theorem 7.2. Thus
we must exhibit an ample invertible sheaf on Mg. We obtain invertible sheaves on the

moduli space by taking powers of invertible sheaves on the stack ]g, via the following
general fact:

Lemma 1.5. Let & be an algebraic stack. Assume Sy — X is finite and let f : X — M be
its moduli space, as in Theorem oDUT. Then

f*: Pic(M) — Pic(%)

is injective. If & is furthermore quasi-compact, then the cokernel of f* is annihilated by
some integer.

Proof. For injectivity, note f, Oy = Oy, as M is initial for morphisms from & to algebraic
spaces, and the structure sheaf represents the functor Hom(—,A!). Thus if A4 € Pic(M)
is such that f* A4 = 0Oy, there is a canonical map A — f,.f* A4 — 0. This is an
isomorphism as A4 is locally trivial. This further shows that if A4, A5 € Pic(M) are such
that there exists an isomorphism ¢ : f*.A4, — f*A5, then there is a unique isomorphism
Y N — AN, such that f*p = .

Supposing that & is quasi-compact, we now show there is an integer n such that
for every £ € Pic(%X), £®" = f* .4 for some A € Pic(M). For this, we may replace
% by any &’ with a surjective separated étale morphism h: &’ — % of algebraic
stacks inducing isomorphisms on automorphism groups. Indeed, Lemma oDUV gives the
Cartesian square

%/T)%

f’l lf

M — M
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where M’ is the coarse moduli space of Z’. If there were A4’ € Pic(M’) such that
h*2®" = f* 4", then injectivity of f”*: Pic(M’) — Pic(Z’) shows that the étale descent
datum for h*2°®" over & induces a étale descent datum for A4” over M, yielding
N € Pic(M) as above.

Choose such a cover h: £’ — Z as in Lemma oDUE: &’ = [ [..; Z; where each
Z; = [U;/R;] is well-nigh affine, meaning U; and R; are affine and s, t : R; — U; are finite
locally free, see Lemma oDUM. Moreover, as & is quasi-compact, we may take I to be
a finite set. This reduces us to the case where & is a finite disjoint union of well-nigh
affine stacks Z;. Let f;: &; — M; be the coarse moduli space, and suppose that there
exists an integer n; annihilating the cokernel of f;*. Then the least common multiple n of
the n; annihilates the cokernel of f*.

Thus it suffices to consider the case where & itself is well-nigh affine. Let ¢: U - &
be an étale presentation as above. Then Proposition 03M3 gives an isomorphism between
the Picard group of & and the equivariant Picard group of the groupoid (U,R,s, t,c);
in particular, Pic(Z') is a subgroup of Pic(U). Therefore, it suffices to show that the
cokernel of

*: Pic(M) — Pic(U)

is killed by an integer n. By its construction in Lemma oDUP, M is the quotient scheme
U/R, so Proposition 03BM shows the morphism U — M is finite locally free. In particular,
a norm of some degree n exists for U — M by Lemma 03BH, so by Lemma oBCY, the
cokernel of 7* is killed by n. [ |

We now specify some invertible sheaves on %g. By Definition 06TR and Lemma
06WI, the data of such an sheaf £ amounts to: for each family of stable curves X — S,
an invertible ds-module ¥ (X — S), and for every Cartesian square as on the right of

X”—>X/—,>X

| |7 gg lf

S’ h

an isomorphism of invertible &g -modules
P gFLX - 8) =2 L(X -5

such that for every composition as above, the isomorphisms are subject to the cocycle
condition

h*(g*2(X —S)) ol (X —S’)
8

.| [o

(gh)2(X = S) —2 (X" — 5.

Definition 1.6. For each integer m > 1, define an invertible sheaf A, on Zg as follows.
Given a family of stable curves f: X — S, let wf?’/”s be its relative dualizing sheaf, see
Definition oE6Q. This is an invertible &x-module. By Cohomology and Base Change, the
sheaves f*wﬁ;”s are locally free on S. Set

An(f: X —8):= det(f*co;?;”s).
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Given a Cartesian square as above, we have isomorphisms ¢, given by

g" det(f, w2, = det(g"f.2y) — det(f/ g W) = det(f w2,

the functorial base change maps and the fact that the formation of wy ;s commutes with
arbitrary base change, see Lemma oE6R. Functoriality ensures that these satisfy the
required cocycle condition.

Our goal will be to show that there is some m such that A,, descends to an ample
invertible sheaf on M.

2.NAKAI-MOISHEZON CRITERION FOR AMPLENESS

In this section, we discuss the Nakai-Moishezon Criterion for ampleness, relating
ampleness of an invertible sheaf with positivity of intersection numbers. We directly
prove the Criterion for proper algebraic spaces over a field in Proposition 2.4 (compare
with [Kolgo, Theorem 3.11]); the proof closely follows that of [Kle66, §III.1, Theorem
1], with suitable modifications. Using Lemma oD3A, one can also formulate a relative
version; see, for example, [Keeo3, Proposition 2.10].

In the following, we work with proper algebraic spaces over a field. For generalities
on algebraic spaces, see Part oELT. Since proper algebraic spaces are separated, they are
decent, see Sections 0317 and 047Y.

We will use numerical intersection theory on spaces, as developed in Section 0DN3;
see also Section oBEL and [Lazo4a, Section 1.1.C] for the situation of varieties. The
main construction is the intersection number (¥, --- %, - Z) between a closed subspace
t: Z — X of dimension d and invertible &y-modules ¥,..., %;: this is the coefficient of
ny - --ny of the numerical polynomial

X(X,0,0, 0L @@ L) = (2,2 ® @ L),

See Definition oEDF.

The Nakai-Moisehzon Criterion relates ampleness with positivity of intersection
numbers. To formulate this succinctly, we make a definition. In the following, recall
that an algebraic space Z over a scheme is integral if it is reduced, decent, and |Z| is
irreducible; see Definition 0AD4.

Definition 2.1. Let X be a proper algebraic space over k and let # be an invertible
Ox-module. We say that £ has positive degree if for every integral closed subspace Z of X
of dimension d, (£4-2) > 0.

Note that the Stacks Project only defines the degree of an invertible sheaf ¥ either
when ¢ is ample or when dim(X) < 1; see Definitions o0BEW and oAYR. The content of
the Nakai-Moishezon Criterion is that if £ has positive degree, then £ is ample. Thus
this is a fortiori compatible with the conventions of the Stacks Project.

The main technical property we need is permanence of positivity under finite mor-
phisms.

Lemma 2.2. Let f: Y — X be a finite morphism of proper algebraic spaces over k. Let ¥
be an invertible Ox-module. If £ has positive degree, then f*% has positive degree.
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Proof. This follows from the compatibility of numerical intersection numbers and pull-
backs: if Z C Y is a proper integral closed subspace of dimension d, then

(f*2?-z)=deg(Z - F(Z))( £ f(2))
where deg(Z — f(Z)) is a positive as f is finite; see Lemma oEDJ. [
The following is the core of the inductive proof of the Criterion:

Lemma 2.3. Let X be a proper algebraic space over k and let D be an effective Cartier
divisor of X. If 0x(D)|p is ample, then Ox(mD) is globally generated for all m > O.

Proof. For each m > 0, there is a short exact sequence
0 — 0x((m—1)D) — Ox(mD) — x(mD)|, — 0.

Since 0x(D)|p is ample, Serre Vanishing, Lemma oGFA, gives an integer m; such that
HY(D, 0x(mD)|p) = 0 for m > m;. Hence the

pm: H'(X, 6x((m—1)D)) —» H'(X, 6x(mD)),

arising from the long exact sequence on cohomology, are surjective for all m > m;,
yielding a nonincreasing sequence of nonnegative integers

h'(X, G¢(mD)) = h'(X, Ox((m + 1)D)) = - .

There is some m, > m; after which the sequence stabilizes, whence the p,, are bijective,
and the restriction maps

H(X, 6x(mD)) — H(D, 6x(mD)|p)

are surjective. Finally, since 0x(D)|p is ample, there exists some ms such that Ox(mD)|p
is generated by its global sections for all m > ms.
Let mg := max(m,, m3). We show that the evaluation maps

HO(X, 0y(mD)) ®; Oy — 0Ox(mD)

are surjective for all m > m,. We verify this on stalks. For x € |X \ D/, a global section
defining mD restricts to a unit in Ox(mD), and thus generates. So consider x € |D|
and let k(x) be the residue field of D at x; see Definition oEMW. Since D — X is a
monomorphism, k(x) is also the residue field at x of X by Lemma oEMX. Then consider
the diagram

H°(X, 0x(mD)) ®; k(x) ——— Ox(mD) ®g, Kk(x)

l |-

HO(D, 6x(mD)|p) ®, k(x) — Ox(mD)|) ®g, k(x)

obtained from the evaluation and restriction maps upon taking the fibre at x. By our
choice of m, the restriction map on the left is surjective, and &x(mD)|p is globally
generated so the bottom map is surjective. Since the right map is an isomorphism,
commutativity of the diagram implies that the top map is surjective. Nakayama’s Lemma
then implies that the evaluation map is surjective on the local ring 0x(mD),. Hence the
evaluation map is surjective, meaning 0y (mD) is globally generated. [ |
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Proposition 2.4 (Nakai—-Moishezon Criterion). Let X be a proper algebraic space over k.
Let & be an invertible Ox-module. Then £ is ample on X if and only if £ has positive
degree.

Proof. If & is ample, then X is a scheme, ¢ is ample in the schematic sense, and £ has
positive degree; see Lemmas 0oD32 and oBEV.

Assuming ¢ has positive degree, we show it is ample. We proceed by induction on
dim(X). When dim(X) = 0, since X is separated, it is a scheme by Theorem 086U, in
which case the result is clear. When dim(X) = 1, our assumption simplifies to deg(.%#) > 0.
Now apply Proposition 09YC to obtain a finite surjective morphism f:Y — X from a
scheme Y. Lemma 2.2 shows that deg(f*%) > 0 and so Lemma oB5X gives ampleness
of f*¢¥. Since f is finite, Lemma oGFB shows ¢ is also ample. So we assume that
dim(X) > 2 and that the Criterion holds for all proper spaces over k of lower dimension.

Step 1. Using Lemmas oGFB, oGFA, and 2.2, we may replace X by the reduction of an
irreducible component and £ by its restriction to assume that X is integral.

Step 2. We show that some power of & is effective. As X is integral, the discussion of
Section oENV shows that . has a regular meromorphic section s. Consider its sheaf of
denominators .#,, the ideal sheaf in &5 whose sections over V € X, are

AHV)={f e ox(V)| fs € £(V)};

compare Definition 02P1. Set .%, :=.%; ® £". Since the formation of the S5, ] =1,2,1s
étale local, their properties may be reduced to the schematic case. Thus Lemma 02Po
shows that the .; are quasi-coherent sheaves of ideals and the corresponding closed
subspaces Y; = V(.%;) satisfy dim(Y;) < dim(X). By Lemma 2.2, induction applies so the
< |Y]_ are ample. By construction, for each m > 0, there are exact sequences

00— H QLM —— %" — 5 ¢, — 0

0 —— y2®$®(m—1) N 2®(m—1) N $®(m_1)|Y — 0.
2

Serre Vanishing, Lemma 0B5U, gives some m > 0 such that for allm > my, H i(Yj, K4 ®m|yj )=
0 for all i > 0 and j =1, 2. Thus comparing the long exact sequences in cohomology for
the sequences above yields

hi(X,2°™) =hi(X, ., ® L°™)
=hi(X, % 2" V) =hi(X,£%mD)
for all i > 2 and m > m,. Hence, for all m > my,,
N i om
N := Zizz (—1) hi(X, £2®m)

is a constant. By definition of the intersection numbers, the leading coefficient of the
numerical polynomial y (X, £®™) is (¥ dimX . X} and this is positive by assumption. Thus

¥ (X, 2% =h'(X, £®™)—hl'(X,%2®™")+ N - 0o asm— oo.
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So ho(X, ¥®™) — oo and ¥°®™ is effective for m > 0. Ampleness is insensitive to
powers (see Lemma 01PT), so we may replace £ by £®™ to assume £ = 0Ox(D) for
some effective Cartier divisor D.

Step 3. By induction, Z|, = 0x(D)|p is ample, so Lemma 2.3 implies £®™ is
generated by its global sections for m > 0. We may replace ¥ by £®™ to assume that
% is generated by its global sections.

Step 4. Via Lemmas 01NE and 085D, a basis of global sections of ¢ induces a proper
morphism

f:X - P} withn:=hoX,2)

such that f *ﬁpz(l) = %. We now claim that f is finite, from which we may conclude: X
is then a scheme as f is then representable, and the pullback of an ample by an affine
morphism is ample, see Lemmas 03ZQ and 0892. By Lemma 0A4X, it suffices to show
that f has discrete fibres. But if there were y € P such that the fibre X, were positive
dimensional, then we would obtain a commutative diagram

C X, X

> | |

Spec(x(y)) — Py

where the right square is Cartesian, and C is some complete curve in X ,,. By commutativity
of the diagram, we see that

ZLle = (f"Opn(1)l¢ = T Ospecii(y)) = Oc-

But now we reach a contradiction: on the one hand, £ has positive intersection numbers
with C, but on the other hand, by Lemma oEDK,

0<(&-C)=deg-(ZL|c)=deg.(0;)=0,

the degree on the right being the usual degree on a curve; see Definition oAYR. Thus f is
a finite morphism, as claimed. |

3.POSITIVITY OF INVERTIBLE SHEAVES

We next prove some preliminary results about nef invertible sheaves on proper algebraic
spaces and about big invertible sheaves on proper schemes over arbitrary fields. See
[Lazo4a] for the theory for varieties over algebraically closed fields.

We start with the definition of nefness.

Definition 3.1. Let X be a proper algebraic space over k. An invertible 0x-module is nef
if (& - C) = 0 for every integral closed subspace C C X of dimension 1.

To show that nef invertible sheaves behave well under pullbacks, we show that we
may lift curves along surjective morphisms; compare with [Kle66, §1.4, Lemma 1]:

Lemma 3.2. Let f: Y — X be a surjective morphism of proper algebraic spaces over k, and
let C C X be an integral closed subspace of dimension 1. Then there exists an integral closed
subspace C’ C'Y of dimension 1 such that C = f(C’).
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Proof. By the weak version of Chow’s Lemma in 089J, there exists a proper surjective
morphism g: Y’ — f~1(C) from a scheme Y’ projective over k. Taking dim(Y’)—1
general hyperplane sections, we obtain a scheme C” C Y’ of dimension 1 mapping onto
C, since C” intersects the fibre over the generic point of C. We can then take C' C Y to
be one of the irreducible components of g(C”) mapping onto C with reduced induced
algebraic space structure. [ |

Nef invertible sheaves behave well under pullbacks.

Lemma 3.3. Let f: Y — X be a morphism of proper algebraic spaces over k. Let £ be an
invertible Oy-module.

(i) If & is nef, then f*% is nef.

(i) If f is surjective and f* <% is nef, then £ is nef.

Proof. For (i), let C C Y be an integral closed subspace of dimension 1. By the projection
formula, Lemma oEDJ, we have

(f*2 - C)=deg(C — f(C)(ZL - f(C)) = 0.

For (ii), let C C X be an integral closed subspace of dimension 1. By Lemma 3.2, there
exists an integral closed subspace C’ C Y such that C = f(C’). The projection formula
again gives

(Z-C)=(Z-f(C)=deg(C’ - C) Y (f*¥-C)>0. (]

Nef invertible sheaves are also well-behaved under field extensions.

Lemma 3.4. Let X be a proper algebraic space over k. Let % be an invertible Ox-module.
Then < is nef if and only if for every field extension k C k’, the pullback of &£ to X ®; k’ is

nef.

Proof. < holds by setting k = k’, and hence it suffices to show =. By the weak version
of Chow’s Lemma in 089J, there exists a proper surjective morphism g: Y — X from
a scheme Y proper over k. Since ¥ is nef, g*¢ is nef by Lemma 3.3, and hence the
pullback of g*% to Y ®; k' is nef by [Keeo3, Lemma 2.18(1)]. Finally, the pullback of £
to X ®; k’ is nef by applying Lemma 3.3 again. u

We will need the following result about nef invertible sheaves on curves that are not
necessarily integral.

Lemma 3.5. Let X be a proper scheme of dimension 1 over k. Let £ be an invertible
Ox-module. If & is nef, then degy(£) = 0.

Proof. When X is integral, the conclusion follows from Lemma oBEY and the definitions.
In general, let Cy, Cs, ..., C, be the irreducible components of X viewed as subschemes of
X with the reduced induced subscheme structure. By Lemma oAYW, we have

t
degy (&) = Z m;deg. (£|c,) for some positive integers m;.
i=1
The integral case gives degy(£|c,) > 0, and thus degy (%) > 0. [ |

We adopt the following definition for big invertible sheaves on proper schemes,
following Kollar [Kolgo, (i) on pp. 236—237].
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Definition 3.6. Let X be a proper scheme over k. An invertible &y-module ¥ is big if
there exists a constant C > O such that

RO(X, £®%") > C - nd™X)  for all sufficiently large n.

By the asymptotic Riemann—Roch Theorem, Proposition 0BJ8, ample invertible sheaves
are big. We show that unlike ampleness, the property of being big behaves well under
birational morphisms.

Lemma 3.7. Let f: Y — X be a birational morphism of proper schemes over k. Let ¥ be
an invertible Ox-module on X. Then ¥ is big if and only if f* < is big.

Proof. Consider the short exact sequence
0= 0y — f.0y > 2 —0.
Then dim(£2) < dim(X)—1 as f is birational, so upon twisting by .#®" and taking global
sections, we see that, by [Debo1, Proposition 1.31(a)], there exists a constant C’ > 0 such
that
WX, f2®M) —ho(X, £°") < h°(X, 2 85, £®") < - n@mE1
for all sufficiently large n. Thus ¢ is big if and only if f*.& is big. [ |

Our next goal is to give an alternative characterization of big invertible sheaves on
projective varieties. We start with the following result, known as Kodaira’s Lemma; see
[Kod72, p. 42] and [Lazo4a, Proposition 2.2.6].

Lemma 3.8. Let X be a proper scheme over k. Let & be a big invertible Ox-module. Then
for every closed subscheme Z C X of dimension < dim(X), there exists an integer m > 0 for
which

H(X, 9, ® £°™) #0.

Proof. Consider the twisted ideal sheaf sequence
0— 9,0, L — L% — 2%, — 0.

Since Z is a proper scheme of dimension < dim(X) over k, there exists a constant C’ > 0
such that
hO(Z, $®H|Z) < c’. ndim(Z)
for all sufficiently large n by [Debo1, Proposition 1.31(a)]. Since ¢ is big,
hO(X, 2°™) > h°(Z, £°™ ;)

for some m > 0. Taking global sections in the twisted ideal sheaf sequence then gives
HO(X, .9, ®, £°™) #0. [

We now prove that a variant of the conclusion in Kodaira’s Lemma 3.8 characterizes
big invertible sheaves on projective varieties.

Lemma 3.9. Let X be a projective variety over k. Let £ be an invertible Ox-module. Then
the following are equivalent:
(i) £ is big.
(ii) For every ample invertible Ox-module .<f, there exists an integer m > 0 for which
HOX, o' ®4 £°M) #0.


https://stacks.math.columbia.edu/tag/0BJ8

PROJECTIVITY OF THE MODULI OF CURVES 11

Proof. (i) = (ii). Let r be sufficiently large so that there are effective Cartier divisors
H, € |./®| and H,,; € |.#®*D|. By Lemma 3.8, there exists an integer m > 0 for
which H°(X, Oy (—H, 1) ®g, L ®m) #£ 0. Since the composition

Ox(~H, 1) = D 2 g (-H,) 84 a7 o
is injective, we then have
0# HX, Ox(—H,11) ®g, £°™) = H(X, g7 ®4 £°™).

(ii) = (i). Let .o/ be a very ample invertible sheaf on X’, and choose an effective Cartier
divisor H € |.&/|. By (ii), there exists an integer m > 0 such that H(X, & (—H) ®g,
£®™) # 0. We can therefore find an effective Cartier divisor E € |0y (—H) ®p, £ em|
which satisfies

Ox(E) = Ox(—H) ®, £°" = o ' ®, £°™.
By the asymptotic Riemann—Roch Theorem of [Deboz1, Proposition 1.31(b)], there exists
a constant C’ > 0 such that for n sufficiently large,

ho(x, ¢~ ®g, A°")>C'- ndimX)  for everyi € {0,1,...,m—1}.
Writingn=m-[n/m]—iforie€{0,1,...,m—1}, we then have
hO(X, 2% = h°(X, 27 ®,4 o/ ®M™([n/m1E))
>hoX, ¢ ®g, 2 ®n/mly
. ol .
/. dim(X) ., dim(X)
>C'-[n/m] > —dm 0 n

dim(X)

and hence choosing C = C’/m , we see that £ is big. u

4.NEF LOCALLY FREE SHEAVES

In this section, we define and study basic properties of nef locally free sheaves; note
that these are referred to as semipositive in [Kolgo]. See [Lazo4b, Part Two] for the
theory for varieties over algebraically closed fields.

First, a definition. Compare with [Kolgo, Definition-Proposition 3.3].

Definition 4.1. Let X be a proper algebraic space over k. A finite locally free Jyx-module
& is ample (resp. nef) if Op(5)(1) is ample (resp. nef) on P(&) in the sense of Definition
oD31 (resp. Definition 3.1).

We show that locally free quotients of ample or nef locally free sheaves are ample or
nef. See [Kolgo, Corollary 3.4(i)].

Lemma 4.2. Let X be a proper algebraic space over k. Let & — & be a surjection of finite
locally free Ox-modules. If & is ample (resp. nef), then & is ample (resp. nef).

Proof. The surjection & — & induces a closed embedding P(%) — P(&) such that
Op(g)(1) restricts to Op(4)(1) by functoriality of Proj; see Lemma 085H. The ample case
follows from the fact that P(&) is a projective k-scheme by the assumption that Op()(1)
is ample, and ampleness is preserved under restriction; see Lemma 01PU. The nef case
follows from Lemma 3.3(i). [ |


https://stacks.math.columbia.edu/tag/0D31
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We now focus our attention on nef locally free sheaves. First, nef locally free sheaves
behave well under pullbacks, as was the case for invertible sheaves in Lemma 3.3.

Lemma 4.3. Let f: Y — X be a morphism of proper algebraic spaces over k. Let & be a
finite locally free Ox-module.

(i) If & is nef, then f*& is nef.

(ii) If f is surjective and f*& is nef, then & is nef.

Proof. By Lemma 085C, we have a Cartesian diagram

P(f*6) — P(&6)

l l

y —L > x
such that f"* Gp(g)(1) = Op(s+£)(1). Both statements follow from Lemma 3.3 applied to
Op()(1), where for (ii), note that f” is surjective, being the base change of f; see Lemma
o03MH. |

Nef locally free sheaves are also well-behaved under field extensions.

Lemma 4.4. Let X be a proper algebraic space over k. Let & be a finite locally free
Ox-module. Then & is nef if and only if for every field extension k C k’, the pullback of & to
X ®; k' is nef.

Proof. It suffices to apply Lemma 3.4 to Op()(1) on P(&). [ |

To show some other important properties of nef locally free sheaves, we prove the
following characterization of nefness. The statement for schemes is known as the
Barton—Kleiman Criterion; see [Bar71, p. 4371, [Lazo4b, Proposition 6.1.18], and [Kolgo,
Definition-Proposition 3.3].

Proposition 4.5. Let X be a proper algebraic space over k. Let & be a finite locally free
Ox-module. Then the following are equivalent:
(i) & is nef.
(ii) For every k-morphism f : C — X from a projective k-scheme C of dimension 1, and
for every surjection f*& — £ where £ is invertible, we have deg.(¥£) > 0.
(iii) For every k-morphism f : C — X from a regular projective curve C over k, and for
every surjection f*& — £ where ¥ is invertible, we have deg.(%£) = 0.

If k is algebraically closed, then these conditions are also equivalent to:

(iv) For every k-morphism f : C — X from a regular projective curve C over k, and for
every ample invertible sheaf 7 on C, the locally free sheaf # ®¢4_ f*& is ample.

Proof. (i) = (ii). Let f: C — X be a morphism as in (ii), and let £ be an invertible
quotient of f*& on C. Applying Sym®(—) to the surjection f*& — £, Lemma o0D2Z gives
amorphism r: C — P(&) such that £ = r*0p4)(1). By Lemma 3.3(i), £ is nef. We then
have deg. (%) > 0 by Lemma 3.5.

(ii) = (iii). This holds since the morphisms appearing in (iii) are special cases of those
appearing in (ii).


https://stacks.math.columbia.edu/tag/085C
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(iii)) = (i). Let g: C’ — P(&) be an integral closed subspace of dimension 1. By
the weak version of Chow’s Lemma in 089J, there exists a proper surjective morphism
f: C — C’ from a scheme C projective over k, and by Lemma 3.2, we may replace C by a
closed integral subscheme mapping onto C’ to assume that dim(C) = 1. Replacing C
by a suitable irreducible component of its normalization, we may also assume that C is
regular and integral. Let 7t: P(§) — X be the projection morphism. By the construction
of relative Proj, we have a surjection 7*& — Op(¢)(1), which pulls back to a surjection

(mogof)'&—(gof) Ops(1)
on C. By (iii) and Lemma oBEY, the pullback (g o f)*Gp(£)(1) is nef. Thus g*Ops(1) is
also nef by Lemma 3.3(ii), and (0p(¢)(1) - C) = 0.
We show (i) = (iv) assuming that k is algebraically closed. Let 7w: P(f*&) — C be the
projection morphism. We want to show that

ﬁp(%’@ﬂcf*g)(l) = Op(s+)(1) ®¢, A

is ample, where the isomorphism shown holds by definition of relative Proj under the
identification P(# ®, f*6) = P(f*&). Let Y C P(f*&) be an integral closed subscheme
of dimension 1. By Seshadri’s Criterion [Lazo4a, Theorem 1.4.13], it suffices to show that

((Goosy (1) ®g, ) -Y) = 1/2g,

where g is the genus of C. If Y is contained in a closed fibre over C, then this positivity
holds since Op(s+¢)(1) restricts to Opn(1) on the closed fibre, where n = rank(f*&) — 1.
Otherwise, we have

((ﬁP(f*é”)(l) ®ﬁc n* ) - Y) >(n*#-Y)> 1/2g

since Op(f+£)(1) is nef by assumption and 7*.# ®2¢ is the sheaf associated to a union of
fibres of 7w by oE3C.

Finally, we show (iv) = (iii) assuming that k is algebraically closed. Let f*& — £ be
a surjection where ¢ is invertible. Choose an ample invertible sheaf 5 on C of degree
1, which exists since k is algebraically closed. Twist this surjection by 5#. Since the
quotient of an ample locally free sheaf is ample by Lemma 4.2, and ample invertible
sheaves have positive degree by Lemma 0B5X, we have

1+degc(¥) =degc(# ®4. L) 21

where the equality holds by Lemma oAYX, and the inequality holds by (iv). This shows
that deg- (%) > 0. [ |

We can now show that nefness is preserved under extensions.
Lemma 4.6. Let X be a proper algebraic space over k. Let
058 —>6-6"-0

be a short exact sequence of finite locally free Ox-modules. If &' and &” are both nef, then &
is nef.

Proof. Let f: C — X be a k-morphism from a regular projective curve C over k, and
let f*§& — &£ be an invertible quotient. By Proposition 4.5, it suffices to show that
deg.(£)>0.


https://stacks.math.columbia.edu/tag/089J
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Denote by .’ the image of f*&’ in £ and by " the quotient sheaf £ /%’. We then
have a commutative diagram

0 — f*¢ —> f*¢ —> f*¢" — 0

l i l

0 <’ < <" 0

where the top row is exact since &” is locally free, and the bottom row is exact by
definition. The sheaf %’ is torsion-free since it is a subsheaf of ., and is therefore locally
free since C is regular of dimension 1; see Lemma 0AUW.

First consider the case where rank(.%’) = 0, in which case ¥’ =0 and ¥ — £” is an
isomorphism. We then have deg. () = deg.(%£") > 0 by Proposition 4.5 since &” is
nef.

It remains to consider the case where rank(¥¢’) = 1, in which case rank(¥”) = 0.
Additivity of Euler characteristics, Lemma 08AA, and the definition of degree, Definition
0AYR, give the first three equations:

dego(£) = x(C,£)—x(C, )
=x(C, L") —x(C,00)+ x(C,2£")
=deg.(¥£) + y(C,%") =deg-(¥")+h°(C,¥")>0.
The fourth equation follows from Lemma oAYT as %" is rank 0, and the final inequality

is Proposition 4.5 as &’ is nef. [ |

Our next goal is to prove that nefness is preserved under various tensor operations.
The idea is to use the Barton—-Kleiman Criterion, Proposition 4.5, to reduce to the curve
case, in which case we will use the following:

Lemma 4.7. Let C be a regular projective curve over an algebraically closed field k, & a
nef finite locally free O.-module, and 5 an invertible O.-module of degree > 2g. Then
& ®gq, S is globally generated.

Proof. We first show that if & is an invertible g.-module such that
H'(C,8®,4 #)#0,
then deg. () < 2g — 2. By Serre Duality, Lemma oFVV, we have
H'(C,&®4, #) = Homg (6 ®4, H#,wc) #0,

and we therefore have a nonzero morphism & ®,. # — w¢. The image . of this
morphism is torsion-free, hence invertible since C is regular of dimension 1; see Lemma
0oAUW. This invertible 0,-module .# satisfies

2g—2=-2x(C,0;) =deg-(wc) = deg.(MA)

where the first equality holds by definition of genus (see Definition 0oBY7); the second
equality holds by Riemann-Roch, Lemma 0BS6; and the inequality holds by the additivity
of Euler characteristic, Lemma 08AA, the definition of degree, Definition 0AYR, and the
fact that

x(C,wc/ M) =h"(C,wc/ M) =0
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by Lemma oAYT. Twisting the surjection & ®,_ s — # by 771
2g —2—deg () > deg (M) —deg ()
= degc (A ®g, # >0

where the equality holds by Lemma 0AYX, and the last inequality holds by the nefness of
& and Proposition 4.5.

We now show the statement of the lemma. Let x € C be a closed point with ideal
sheaf 0(—x). We have a short exact sequence

0> 8Qq H(—x) > EQy, H — E®y, H|, — 0.
Using Lemma 0AYX again, we have
deg. (o (—x)) = deg () —deg(O-(x)) =deg (o) —1>2g—1,

and hence H!(C, & ®g, #(—x)) = 0 by the previous paragraph. Thus, & ®,. € is
globally generated. u

We will also need the following to reduce to the case when the ground field k is of
positive characteristic. Note that the corresponding statement for nefness does not hold
as shown by Langer, due to examples of Monsky, Brenner, and Trivedi [Lan13, Example
5.3], of Ekedahl, Shepherd-Barron, and Taylor [L.an13, Example 5.6], and of Moret-Bailly
[Lanis, §8].

Lemma 4.8. Let Y be a Noetherian scheme, and let f : X — Y be a proper morphism from
an algebraic space X. Let & be a finite locally free Ox-module. Let y € Y be a point such
that &, is ample on the fibre X,,. Then there exists an open neighborhood V. €'Y of y such
that &, is ample on the fibre X . for every point y' € V.

Proof. Apply Lemma 0D3A to Op(¢)(1) on P(&). [ |

We now prove the following result, originally due to Barton for schemes [Baryi,
Proposition 3.5()].

Proposition 4.9. Let X be a proper algebraic space over k. Let & and &' be nef finite locally

free Ox-modules. Then & ® 5 &' is nef, as are &°", Sym"(&), I'"(&) := (Sym"(&"))", and
n

N (&) for all n > 0.

Proof. If & and &’ are nef, then & := & ® &’ is nef by Lemma 4.6, and £ ®,, &’ is a locally
free quotient of the locally free sheaf ¢¥®2. By Lemma 4.2, it therefore suffices to show
that £&°", Sym™(&), I'"(&), and /\n(é”) are nef. We will denote any such sheaf by p"(&).
By Lemma 4.4, we may assume that k is algebraically closed.

Step 1. Proof when char(k) > 0.

Fix a k-morphism f : C — X from a regular projective curve C over k. Let & be a
quotient invertible sheaf of p"(&), and set d := deg. (). By Proposition 4.5, it suffices
to show that d > 0.

Let 5# be an invertible J--module of degree 2g, where g is the genus of C. For every
e > 0, consider the e-th iterate of the absolute Frobenius morphism F¢: C — C, which
is a finite morphism of degree p®. We claim that for every e > 0, there is a generically
surjective morphism

() (A - Fp"(f*6),
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where r := rank(f*&). Since F*"f*& is nef by Lemma 4.3, the sheaf F**f*& ®, # is
globally generated by Lemma 4.7. By choosing r global sections that form a basis after
localizing at the generic point of C, we obtain a morphism (#1)®" — F* f*& that
induces an isomorphism at the generic point of C. Applying the functor p"(—), we obtain
a generically surjective morphism of the form in (x).

We now show that d = deg-(%) > 0. Note that F®* £ = ¥®P" is a quotient invertible
Oc-module of F¥*p"(f*&) and that deg-(F**¥) = p®d by Lemma 0AYZ. By the previous
paragraph, (5~ ™)®" surjects onto a subsheaf .# of F®*.% that is torsion-free of rank
1, hence invertible since C is regular of dimension 1; see Lemma oAUW. Twisting the
surjection ()" — 4 by #®", we see that 4 ®,_ #°" is nef by Lemmas 4.2 and
4.6, and hence

degc (M) = dege (M ® g, #°) +degc(#7") = —2gn
by Lemma 0AYX and Proposition 4.5. We then have

péd =deg (F* %)= y(C,F&*¥)—x(C, 0;)
=x(C, M)—x(C,00)+ x(C, &L/ M)
=deg.(#)+h°(C, %/ M)>—2gn

where the equalities hold by the additivity of Euler characteristics and the definition of
degree; see Lemma 08AA and Definition oAYR. Since this inequality must hold for all
e > 0, we see that d > 0.

Step 2. Proof when char(k) = 0.

It suffices to show that for every k-morphism f : C — X from a regular projective curve
C over k, and every invertible quotient £ of p"(f*&), we have deg-(£) > —n. Indeed,
if g: C’ — C is a finite surjective morphism of degree e > 0, then

e-deg-(¥)=deg(g"¥)=—n

holds by Lemma oAYZ. Since this inequality must hold for all e > 0, we see that
deg. (%) = 0, and hence p"(f*&) is nef by Proposition 4.5.

We now show that deg.(%¢) = —n for every morphism f : C — X and every quotient
invertible sheaf & of p"(f*&) as above. Since C is projective over k, there exists a
finitely generated Z-algebra A C k and a projective morphism C, — Spec(A) such that
the diagram

C—C,

fl [

Spec(k) —— Spec(A)

is Cartesian. Let S be an invertible sheaf on C of degree 1. By Lemma oB8W, after
possibly enlarging A, we may assume that there exist invertible 0, -modules ¢, and
%,, and a finite locally free 0,-module Z, that pull back to 5¢, £, and f*&, on C.
By Lemma 01ZR and [Gro66, Corollaire 8.5.7], we may also assume that there exists a
surjection

(%) P"(Fa) = Za
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that pulls back to p"(f *6) — £ on C. Now by Proposition 4.5, the Oc-module £ ®,,_ f*&
is ample. By Lemma 4.8, after possibly replacing A by a principal localization, we may
assume that ¢, ®ap, &, is ample on every fibre of f,, since it is ample after pulling back
to the generic fibre of f, by applying Lemma oD2P on P(5%, ®a, Z,). Moreover, by
generic flatness, Proposition 052A, and Lemma o5F7, we may assume that f, is flat with
one-dimensional fibres.

Let y € Spec(A) be a closed point with residue field x(y), and set C,, := fA_l(y). Since
fa is flat, the invertible 0, -modules £, and &, are flat over A. So, writing 7 for the
generic point of Spec(A), we have

degC(g) = degCn(zn) = X(Cn; gn) - X(CVP 0Cn)
= X(C_y: gy) - X(Cya 0Cy) = degcy (‘gy)
where the first equality holds by Lemma 0Bs59 applied to the field extension Frac(A) C k,
and the third equality follows from the constancy of Euler characteristics in proper flat
families, Lemma 0B9T. By the same argument, degcy (#£,) = 1. Since S, ®,4. F, is
Y
ample, it is nef, and hence %y@’" ®g.. P"(Z,) is nef by Step 1. Thus, the surjection (x*)
Y
twisted by " and then restricted to C \, implies
_ - ®
degcy(zy) = degc, (™ ®ac, 7" ®o, Zy)
=—n+degc (%y@’" ®a, %,)=—n
by Lemma 0AYX and Proposition 4.5, as desired. [ |

We end this section a criterion for bigness that will feature in the proof of Lemma 5.4:

Lemma 4.10. Let X be an projective variety over k and let & be an invertible Ox-module.
Let & be a finite locally free Ox-module with associated projective bundle 7t: P — X. Assume
that
(i) & is nef,
(ii) ZV is nef, and
(iii) there exists a > 1 and ample invertible sheaf ./ on X such that

HO(P, 0p(a) ®g, T" L ®g, ) £ 0.
Then ¥ is big and nef.

Proof. Set d := dim(X). By (i) and the version of asymptotic Riemann—-Roch Theorem
of [Debo1, Proposition 1.31(b)], it suffices to show that the intersection number (& d) is
positive. By (iii), we may choose a nonzero morphism

Op = Op(a) ®g, T° %L ®g, n*ef L

Applying the projection formula and rearranging yields a nonzero morphism 7: I'(&V) —
% g, o ~1. Since the sheaf on the right-hand side is locally trivial, the image of 7 is of
the form 4 ®4, (¥ ®, /1) for some coherent sheaf of ideals .#. Let f: Y — X be the
blowup along .¢ and with exceptional divisor D. Then f*7 gives a surjection

FITUE) > M= f"L @y, f*dd ™' ®g, Oy(—D).
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By (ii), Proposition 4.9, and Lemma 4.3(i), the sheaf on the left-hand side is nef, hence
by Lemma 4.2, .# is also nef. Rearranging thus gives

F*LEf e ®g M ®g Op(D).

Since f is birational, dim(Y) = d = dim(X) and, by Lemma oBET, (f*¥9) = (£) and
(F*#?) = (#?). In particular, the latter quantity is positive since .¢/ is ample, see
Lemma oBEV. Additivity of intersection numbers, Lemma oBER, gives

d . .
(Y=LY= oD+, (et e a(D)).
The latter sum is nonnegative: by additivity and restriction, Lemmas oBER and oBEU,
the i-th summand is the sum

(frad e )+ (T LT p) = 0

of intersection numbers of nef invertible sheaves, and hence each nonnegative by [Keeo3,
Lemma 2.12]. Therefore (£%) > (&%) > 0. [ |

5.,AMPLENESS LEMMA

In this section, we formulate a method for proving ampleness of line bundles of the
form det(£2), where £ is a locally free quotient of a symmetric power of a nef finite
locally free sheaf &. The basic method is due to Kollér in [Kolgo, Lemmas 3.9 and 3.13],
refining an idea of Viehweg [VieS89]. We also incorporate a refinement due to Kovacs
and Patakfalvi from [KP17, Theorem 5.5].

The idea is as follows: locally, £ is a quotient by a trivial vector bundle, so det(£) is
locally the pullback of the Pliicker bundle under a classifying map to a Grassmannian.
Globalize this by universally trivializing & by passing to its frame bundle; the quotient
bundle now gives a classifying map to a stack of the form [G(N, q)/PGL,,]. The Ampleness
Lemma 5.5 is then a generalization of the familiar fact that the pullback of an ample
sheaf under a finite map is ample.

We begin by constructing frame bundles. Let S be a scheme and let & be a finite
locally free ds-module of rank n. Fix a free Z-module A of rank n. Let T be a scheme
and consider triples (f: T — S, ¥, v) where

(i) f: T — S is a morphism of schemes,
(i) £ is an invertible 0r-module, and
(iii) ¢: O ®z A — f*E ®, £ is an isomorphism of Or-modules.
Call two triples (f,.%,) and (f', £’,%’) over T equivalent if f = f’ and if there exists
an isomorphism f3: £ — £’ such that 3 o1y = v’. The frame functor of & is the functor

Fr(&): Sch®PP? — Sets

T — {equivalence classes of (f : T — S, ¥, ) as above}

with pullbacks under T’ — T defined as expected. Up to isomorphism of functors, this is
independent of the choice of A, so we suppress it from the notation.

Two important structures: First, projection of (f: T — S, %, %)) onto the first factor
yields a morphism of functors Fr(&) — S. Second, given f : T — S, the set of equivalence
classes of (f, £,)) admit a simply transitive action of PGL(A) via pre-composition on 1);
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note this is well-defined since automorphisms of £ are given by scalar multiplication.
Therefore Fr(&) is a functor of PGL(A)-sets over S.

Lemma 5.1. Let S be a scheme and & a finite locally free Os-module of rank n. Then there
exists an effective Cartier divisor

D := V(det(p” . )) & P(#om(&, s ®; A)) =: P
such that the frame functor Fr(&) is representable by the open subscheme
Fr(§) =P \D.
The structure map Fr(&) — S exhibits this as a PGL(A)-torsor over S.

Proof. Consider a triple (f: T — S, %,y) as above. By adjunction, the isomorphism
Y: Op®zA — f*E®4 < uniquely determines a surjection ¢ : f*#om(&, Os @A) — £.
This exhibits Fr(&) as the subfunctor of the projective bundle P on which ¢ is an
isomorphism.

On the other hand, let w: P — S be the structure map and consider the universal
quotient ¢ i, : mFHom(E, Os ®; A) — Op(1). By adjunction, this yields an injective map
: Op ®z A > T°E ®4, Op(1) and hence a universal determinant

(puniv :
det(cpfniv): Op ®7 det(A) — det(n* & ® 4, Gp(1)).

Let D be the divisor determined by its vanishing. Then the open subscheme Fr(&) :=P\D
represents the functor Fr(&). [ |

We call the scheme Fr(&) the frame bundle of & over S. The torsor structure on the
frame bundle induces a classifying map from S to the classifying stack BPGL(A) fitting
into a Cartesian diagram

Fr(§) — pt

gl |

S — 5 BPGL(A)

We now construct lifts of this classifying map to quotient stacks of certain Grassmannian
whenever given, additionally, a: Sym?(&) — £ a finite locally free quotient of rank g,
with d some positive integer. The strategy is to pull the quotient back to the frame bundle
and take symmetric powers of the universal trivialization map

lpuniv = (anivlFr(é") : ﬁFr(é*’) ®z A>TE® 0Fr(é’)(1)

to give PGL(A)-equivariant morphisms to G := G(Sym?(A), q), the Grassmannian pa-
rameterizing rank q quotients of Sym?(A). Note ), is equivariant for the action of
PGL(A) on Fr(&), where the action is tautological on the source and trivial on the target;
likewise, PGL(A) acts on G via the action on Sym?(A) induced by its tautological action.

Lemma 5.2. Notation as above, there exists a commutative diagram

Fr(&) = G pt
L]

s — 1t BPGL(A)
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such that all squares are Cartesian. Moreover, writing Og(1) for the Pliicker line bundle on
G, we have
[7*a]*0g(1) = n* det(L) ® Girie) Opr(£)(qd).

Proof. Pulling back a to Fr(&) and pre-composing with the d-th symmetric power of the
universal trivialization 1,,;, gives a surjection

Symd(ﬁFr(é”) ®zA) > 7 Symd(g’) ® Oprg)(d) = m* 2 ® Cpy5)(d).

We obtain a morphism [t*a]: Fr(&) — G via the universal property of the Grassmannian,
which is, moreover, PGL(A)-equivariant by the description of the actions above.

Thus we have the data of a PGL(A)-torsor over S with a PGL(A)-equivariant morphism
to G: this is a morphism [a]: S — [G/PGL(A)] lifting the classifying map for Fr(&); see
Section o4UI. [ |

The morphism [a]: S — [G/PGL(A)] is called the classifying map of a. The aim is
to pull positivity back to det(&2) via [a] from 0g(1). This is achieved most directly by
asking for [a] to be a quasi-finite morphism of stacks; see Definition oG2M and compare
with [Kolgo, Definition 3.8]. Concretely, since S is a scheme, [a] is a representable
morphism, so by Lemma 04XD, [a] is quasi-finite if and only if [t*a]: Fr(§) — G is a
quasi-finite morphism of schemes.

Kovéacs and Patakfalvi observed in [KP17] that the simpler condition that [a] has finite
fibres suffices. Toward this, consider the scheme

T, := image ((n, [t*a]): Fr(&) — S xi G)

with its natural morphisms 71y: Tp — S and g,: Ty — G. Passing to T, may be thought
of as eliminating the stabilizers of [a]:

Lemma 5.3. In the situation of Lemma 5.2, if [a]: S — [G/PGL(A)] has finite fibres then
go: To — G is a quasi-finite morphism of schemes.

Proof. Let x: Spec(k) — [G/PGL(A)] be a morphism from a field k and let S, be the
fibre along [a]. The hypothesis is that S, is a finite set. Then for any lift ¥: Spec(k) — G
of x, the fibre Ty, ; along g is a closed subscheme of S, x {X} and thus is itself finite. M

The following statement is the heart of the Ampleness Lemma, and is an analogue of
the fact that the pullback of an ample line bundle by a generically quasi-finite morphism
is big.

Lemma 5.4. In the situation of Lemma 5.2, assume that
(i) S is a normal projective variety over k,
(ii) & is nef, and

(iii) the classifying map [a] generically has finite fibres.

Then det(&) is big and nef. In particular, (det(2)4™()) > 0.

Proof. We aim to apply Lemma 4.10 with & := #om(&, O; ®; A) and £ := det(2)®™
for some appropriately chosen integer m > 0. The first two hypotheses are already
satisfied: 4.10(i) is because ¢ is a tensor power of a determinant of a quotient of a nef
sheaf, see Lemma 4.2 and Proposition 4.9; 4.10(ii) is because ZV = &®" is a sum of nef
bundles and hence is itself nef by Lemma 4.6.
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It remains to arrange for condition 4.10(iii). The construction of the classifying map
in Lemma 5.2 gives a rational map [t*a]: P --» G. Blowing up the ideal sheaf in the
image of

N sym?(6p ®, A) > Go(qd) ® 5, 7 det(2)

induced by m*a o Sym?(v);,) yields a birational morphism b: P’ — P, a morphism
f: P’ — G resolving [*a], and an effective Cartier divisor D of P’ such that

fro5(1) = b*(ﬁp(qd) ®g, T det(Q)) ®g, Op(—D).

Let T be the image of (mob,f): P > SxGandlet 7: T — S and g: T — G be the
induced morphisms. We claim that g is generically quasi-finite. Indeed, b: P’ — P is an
isomorphism over Fr(&), so we may identify Fr(&) with a dense open subscheme of P’.
Therefore the scheme T, from Lemma 5.3 is a dense subscheme of T; being the image
of a morphism of schemes, T, is constructible by Chevalley’s Theorem 054K and hence
contains a dense open subscheme of T. Now hypothesis (iii) together with Lemma 5.3
implies g is generically quasi-finite.

We may now complete the proof of the Lemma. Since gg(1) is ample and g is
generically quasi-finite, g*0g(1) is a big invertible sheaf on T. Let .« be any very ample
invertible sheaf on S. Then Lemma 3.8 gives

H(T, g*05(m) ®g, *."1)#0 for some integer m > 0.

Pulling back to P/, multiplying by an equation of the effective divisor D, and then applying
the projection formula gives
0#H(P, f*0g(m) ®4, b*n*. /™)
C H(P',b*(Gp(qdm) ® 4, m* det(2)®™ ® 4, m*./ 1))
= HO(P, (Gp(qdm) ® 4, 7" det(2)®™ ® 4, 1%/ 1) ® 4, b, Opr).
Now P is normal by hypothesis (i), so the Stein factorization of the birational map b

is trivial; see Theorem o3Ho. In particular, b, 0y = Gp. Setting £ := det(2)®™ and
a := qdm, we conclude that

HO(P, 0p(a) ®g, T" L ®g, ) £0.

Thus hypothesis (iii) of Lemma 4.10 is satisfied and it applies to show that det(2)®™ is
big and nef, and so det(£) is itself big and nef. |

Proposition 5.5 (Ampleness Lemma). Let X be a proper algebraic space over k, & a locally
free Oy-module of rank n, d a positive integer, and a: Sym?(&) — £ a locally free quotient
of rank q. Assume that

(i) & is nef, and

(ii) the classifying map [a] has finite fibres.
Then det(L) is ample on X.
Proof. We aim to apply the Nakai-Moishezon Criterion, Proposition 2.4. Thus we need

to show that det(£) has positive degree on each integral closed subspace v: Y — X.
Applying Chow’s Lemma 088U and normalizing gives a modification f: Y’ — Y from
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a normal projective variety Y’. Compatibility of intersection numbers with pullbacks,
Lemma oEDJ, gives

(det(Q)dim(Y) Y)=(* det(Q)dim(Y)) = (f** det(Q)dim(Y/)).

This final quantity is positive by Lemma 5.4: the pullback of & to Y’ is nef by Lemma
4.3(1), and the classifying map on Y associated with the pullback of a is but the composite

[Fral: v/ 5 v 5 x 1 ra/paria)]

and thus generically has finite fibres as each of f, i, and [a] do. [

6.NEFNESS FOR FAMILIES OF NODAL CURVES

In this section, we prove that f, w?/”é isnefforallm>2and f: S — C is a family of

stable curves over a smooth projective curve C over k; see Theorem 6.10. In other words,
we show that the corresponding vector bundle on the stack ]g is nef.

Since nefness is insensitive to field extensions by Lemmas 3.4 and 4.4, throughout, we
assume our base field k is algebraically closed. Furthermore, all schemes and morphisms
appearing with be over k. We will make constant use of the following transitivity property
of relative dualizing sheaves: by Lemma oE30, there is an isomorphism

~ ¥, —1
Cl)s/c—ws ®ﬁsf CL)C .

The first positivity result is Proposition 6.3 and it concerns families in which the
generic fibre is smooth. This is generalized in Proposition 6.7 to positivity when wyg/ is
twisted up by some sections. Finally, as a general family of stable curves is essentially
obtained by glueing generically smooth families along horizontal curves, this gives us the
main positivity result in Theorem 6.9.

To begin, we discuss the local structure of nodal families of curves. Solet f: S — C
be a nodal family of curves over a smooth projective curve C. The interesting locus is
the closed subset Sing(f) C S of points at which f is not smooth. This has a canonical

scheme structure given by the first Fitting ideal of Q; Jc> see Section oC3H.

Lemma 6.1. Let f : S — C be a family of nodal curves over a smooth projective curve C.
(1) If s is an isolated point of Sing(f ), then

00, % 00 [x,y1/(xy — ")
where T is a uniformizer of ﬁC/'\f(s) andn = 1.
(ii) If s is not isolated in Sing(f), then there exists a commutative diagram

Se——U — W
sl l/
C———V

where W :=V @y k[u,v]/(uv), the morphisms S « U — W, and C « V are étale,
and there is a point u € U mapping to s € S.

Proof. In the isolated case, this follows from Lemma oCBX, noting that all nodes are split
since we assume k is algebraically closed. In the non-isolated case, this follows from
Lemma oCBY. See also oCDD. u


https://stacks.math.columbia.edu/tag/0EDJ
https://stacks.math.columbia.edu/tag/0E30
https://stacks.math.columbia.edu/tag/0C3H
https://stacks.math.columbia.edu/tag/0CBX
https://stacks.math.columbia.edu/tag/0CBY
https://stacks.math.columbia.edu/tag/0CDD

PROJECTIVITY OF THE MODULI OF CURVES 23

The isolated points in Sing(f) as in 6.1(i) are rational double points and can be
resolved by repeated blowup. See Section oBGB and also [Art66]. Since the singularity
is rational, we may harmlessly pass to a resolution of such singularities:

Lemma 6.2. Let f : S — C be a family of nodal curves over a smooth projective curve C. Let
b: S’ — S be the minimal resolution of the isolated singularities of S. Then b,wg/c = wg/c.

Proof. There is a canonical morphism b, wg//c — wg/ obtained by dualizing the map
b*: 0; — b,0,. This map is an isomorphism on the locus b is an isomorphism, and
around the singular points, this follows from Lemma oBBU. [ |

We are now ready for the first positivity result, concerning families of nodal curves in
which the generic fibre is smooth. Then the total space is normal as only the isolated
singularities as in Lemma 6.1(i) may appear. Compare with [Kolgo, Proposition 4.5].

Proposition 6.3. Let f : S — C be a family of nodal curves over a smooth projective curve
C. If the generic fibre of f is smooth of genus g > 2, then f*w?/”é is nef for any m > 2.

We first prove Proposition 6.3 under a series of simplifying assumptions in Lemma
6.5, then explain afterward how these assumptions may be removed. The crucial input
is the following consequence of vanishing theorems for surfaces of general type due to
Mumford and Ekedahl.

Lemma 6.4. Let S be a smooth projective minimal surface of general type, and D a reduced
effective Cartier divisor with connected components of genus at least 2 and 0s(D)|p = Op.
Then for any m > 2,

=0 if char(k)#2orm# 2,

h(S, w®™(D
(8, 5™ )){Sl if char(k)=2and m =2,

Proof. From the cohomology of the exact sequence
0 @™ = wZ"(D) - w™(D)|p — 0,

it suffices to show h'(S, wS™(D)|p) = 0 and bound h'(S,wE™). For the former, the
adjunction formula, Lemma oB4B, gives

2" (D)|p = 2" (mD)|p = ™.

Since the genus of each connected component of D is at least 2,
H'(S, wg™(D)lp) = H'(D, w3™) =0

when m > 2, by degree reasons, see Lemma oBogo.

As for hl(S,w?m), the vanishing theorems of Mumford [Mumé67, Theorem 2] in
char(k) = 0 and Ekedahl [Eke88, Main theorem. (i)] in char(k) > 0 yield the required
bounds. [

Lemma 6.5. Proposition 6.3 holds with additional assumptions that
(i) the characteristic of k is p > 0,
(ii) S is minimal, and
(iii) the genus of C is at least 2.
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Proof. The assumption on the genus of the fibres of f together with (iii) imply that a
resolution of S is of general type; see [CZ15, Theorem 1.3]. So, if f, w wg /c were not nef,
we may seek a contradiction to Lemma 6.4. The Barton—Kleiman Criterion, Proposition
4.5, then gives an invertible quotient a: f, w?/"é — 4" such that d := deg(.#) > 0.
Let Fo: C — C be the absolute Frobenius of C and consider the base change f': S’ — C
of f. This is still a family of nodal curves by Lemma oC5B. Since smoothness is stable
under base change by Lemma 01VB, the generic fibre of f’ is also smooth. Since formation

of dualizing sheaves commutes with base change, see Lemmas 0B91 and oE6R,

Q ~ ® ~
Fofiwg)e = <8 g = f! “)S//c
where g: S’ — S is the projection. Pulling a back by F. yields a negative quotient
f’w?,’?c — F: " of degree —dp. Replacing f by f’, we can take d = deg(.#) to be
arbitrarily large. Thus we may assume ./# = wg™ ®, £ for some very ample invertible
Oc-module Z.

At this point, using Lemma 6.2, we may also replace S by a minimal resolution of its
singularities to assume S is smooth. Thus we now have a family of nodal curves f : S — C
from a smooth minimal surface S of general type, and, upon rearranging terms of a, a
surjection of sheaves

4 ®ﬁC w?m ®ﬁC f*(l)?/né
Since C is of dimension 1, we obtain the inequality

h'(C, 2 ®g, wg" 8, fuwlye) Zh'(C,0) =g

->> ﬁc.

On the other hand, consider the invertible d;-module
g ::f*z ®0S (f*w?m ®ﬁ$ C()?/né) gf*f ®05 C()®m
where we have used transitivity of dualizing sheaves. Since f has relative dimension 1,

the Leray spectral sequence, Lemma 01F2, for f and % degenerates on the E,-page and
yields a short exact sequence

0— HY(C,f.Z)— HYS,Z)— H°(C,R*f,Z) — 0.

The projection formula gives f,.F = £ ®4, wd™® ac f,w®m so this sequence together

with the inequality above gives

h'(S,f*% ®g wS™) =h'(S,#) = h'(C,f,F) =g > 2.

S/C’

Since ¢ is very ample, we may choose an effective Cartier divisor D in |f*%| which is
the union of smooth fibres of f. Then f*¥ = (D) yields a contradiction to Lemma 6.4.

Therefore, f,w® wg /c is nef. |

Proof of Proposition 6.3. We explain how to remove the assumptions (i), (ii), and (iii) of
Lemma 6.5.

We may reduce to characteristic p > 0 as in Step 2 in the proof of Proposition 4.9. That
is, if k were of characteristic 0 and f,w® wg /e ™ had a negative quotient, then choose a finitely
generated Z-algebra over which everything is defined. We may then reduce modulo some
prime p to yield a contradiction to Lemma 6.5. Thus we may drop assumption (i).

If S were not minimal, consider any (—1)-curve E. Then E is contained in fibres of
f since, otherwise, f|: E — C would be a dominant morphism from a curve of genus
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0 to a curve of genus g > 2, which is impossible. So contracting E as in Lemma oC2N
yields a normal projective surface S’ a morphism f’: S’ — C such that f = f’ o b, where
b: S — S’ is the contraction map Since b, wg = wg, transitivity of relative dualizing
sheaves implies f w?,’/"c = fw?® wg / - Successively contracting (—1)-curves will produce a
minimal model f;,: Sy — C of f: S — C. Induction on the number of contractions
gives
f* ?/nérvfmm* mm/c

and nefness of the former follows from the nefness of the latter. Thus we may drop both
assumptions (i) and (ii) in Lemma 6.5.

Finally, if the genus of C is less than 2. Let g: C’ — C be any finite cover from a smooth
projective curve C’ of genus > 2, and let f’: S’ — C be the base change of f Then, as
before, f’ is a family of nodal curves with smooth generic fibre and g*f, w wg / c= =f! cos, e
This is nef by Lemma 6.5. Hence f,w® wg / B is also nef by Lemma 4.3(ii). This completes

the proof. |

As a consequence, we obtain the following weak positivity result for wg,; on S. See
also [Kolgo, Corollary 4.6].

Corollary 6.6. In the situation of Proposition 6.3, let C, be a section of f. Then (wg/c-C¢) =
0.

Proof. If not, consider the pushforward along f of the sequence

0—>a)5/c( C,) = 2" ®"é|Ct — 0.

s/jc
We have le*(ws/c( C )) = 0 by looking at degrees along fibres, see Lemma 0Bgo. So
this gives a surjection f, w® wg / o > fLwg /c|Cf' But f|¢, : C; — C is an isomorphism, so this

is an invertible quotient of degree (wg/c - C;) < 0, contradicting nefness from Proposition
6.3. |

Towards positivity for general families of stable curves, we need the following general-
ization of Proposition 6.3, in which the relative dualizing sheaf is twisted up by sections,
and where the fibres of f may be of genus 0 or 1. Compare with [Kolgo, Proposition 4.7].

Proposition 6.7. Let f: S — C be a family of nodal curves over a smooth projective curve
C. If the generic fibre of f is smooth, then, for any set of pairwise distinct sections Cy,...,C,
of f contained in the smooth locus of S,

f*(w?/n(l;(alcl toeet ancn))
is nef forany m>2and any 0 < a,,...,a, < m.

Proof. We may reduce to the case where the C; are pairwise disjoint by repeatedly
blowing up their intersection points and using the argument in the proof of Proposition
6.3 regarding the hypothesis of 6.5(ii). Likewise, since the C; avoid the singularities of S,
we may pass to a minimal resolution of singularities of S using Lemma 6.2. Henceforth,
we assume the C; are pairwise disjoint and that S is smooth. We split the proof into three
cases, depending on whether the genus of the generic fibre of f is > 2, 0 or 1. Each case
will proceed by induction on j := ) a;.
Case 1. The generic fibre of f is of genus g > 2.
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Here the base case where each a; = 0 is Proposition 6.3. Assume the claim is proven
for D; := > a;C;; we will prove it for Dj,, := D;+C, for any index t such thata, +1 < m.
Consider the exact sequence

0- wS/C(D )= a’s/c(DjH) - cO?/né(Dj+1)|ct -0

obtained by twisting sequence for C, by ws f 7c(Djy1). Since the C; are pairwise disjoint,
together with transitivity of relative dualizing sheaves and the adjunction formula, we
have

~ _ ®m—a —1 ®a;+1 ® a,—1
wgeDjile, = Wee o ® (w5 ((a, +1)Clc, ® )
~  ®m—a,— 1|
s/c oy

Because a, + 1 < m, Corollary 6.6 together with Lemma oBEY shows that this invertible
sheaf has non-negative degree on C,. Also note that R* f*(ws f 7c(D;)) = 0 due to degree
on the fibres; see Lemma oBgo.

Thus applying f, to the above exact sequence yields an exact sequence

0 _)f*(w?/C(D )) - f*(ws/C(Dj+1)) - f*(w?/"é_a[_lkt) — 0.

The subsheaf is nef by the induction hypothesis, and the quotient sheaf is a nonnegative
invertible sheaf on C, as C; is a section. Thus the extension is nef by Lemma 4.6,
completing the induction in this case.

Case 2. The generic fibre of f is of genus g = 0.

When j = > a; < 2m—1, the sheaf w®m (Z a;C;) is negative on fibres of f and hence
has vanishing, whence nef, pushforward these are the base cases. Let j > 2m —1 and
assume that the claim is true for all divisors of the form »_a;C; with >} a; = j; we will
prove it for D = C, + > a;C; for any index ¢ such that a, + 1 < m.

We can assume that (Ctz) < 0. Indeed, by the Hodge Index Theorem, we may assume
that among Cy, ..., C,, the only section with positive self-intersection is C;. Soif t =1,
as a; < m < 2m— 1, there is some index s such that a; # 0. Thus we may write

D=C +.a,C=C+ Y dC

with a] :=a; +1, a] :==a;—1, and a/ := q; for i # 1,s. Then D,a; = >,a; = j and
induction will apply to >’ a;C;. With this, we see by the adjunction formula as in Case 1,
that
wsic(Cole, =05, so (wsyc-C)=—(CH=0.

From here, induction proceeds as in Case 1.

Case 3. The generic fibre of f is of genus g = 1.

To establish the base case and the nonnegativity (wg/¢ - C;) = 0, we claim that it
suffices to show y (S, 0) > 0. Indeed, the canonical bundle formula for elliptic surfaces
in [BM77, Theorem 2] gives

wgyc = [ M ® g, O5(F)

where F is an effective Cartier divisor supported along fibres of f and .# is an invertible
Oc-module with degree > y(S, ). Thus

f*(a)?/”é =" and  (wgic - C)=(f* M -C)= x(05)
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so nefness of f*(w?/"é) and nonnegativity will follow from y (S, 05) > 0.

Since y (S, 0s) is a birational invariant, we may in fact assume S is minimal over C. In
this case, the effective Cartier divisor F is actually a sum of fibre classes, at least viewed
as a Q-Cartier divisor: see [BM77, Bottom of p. 28]. Thus wg is a sum of fibre classes
and so (cog) = 0. Noether’s Formula then gives

12x(S, 05) = (w3) + e(S) = e(S) > e(C)e(S;) = 0,

where e denotes £-adic topological Euler characteristic, £ any prime different from p,
and Sj is the geometric generic fibre of f : S — C. The inequality follows from [Lan8o,
Lemma 1], and e(S;) = O since the generic fibre of f is a smooth curve of genus 1. With
this, induction may proceed as in Case 1, and the proof of the Proposition is complete. W

To obtain a positivity result for a general family f : S — C of stable curves, it remains
to consider the non-isolated singularities of Lemma 6.1(ii). Let D be the subscheme of
1-dimensional components of Sing(f ), and call it the double locus of S. The following
explains how a general family of nodal curves is obtained by glueing nodal families with
only double points along the double locus:

Lemma 6.8. Let f : S — C be a family of nodal curves over a smooth projective curve C.
Let v: S” — S be the normalization. Then S” is a disjoint union of nodal families of curves
over C with smooth generic fibre, and wgv;s = Og»(—D") where D” := v~ 1(D).

Proof. Lets € D be a point of the double locus of S, and consider the diagram of Lemma
6.1(ii):

Se——U —— W

L

C——V

Since the morphisms S <~ U — W are étale and normalization commutes with smooth
base change by Lemma 03GV, there are étale morphisms S” « U” — W”. Since C <V
is also étale, V is smooth, so the same Lemma gives

W”» =V @ (k[u] x k[v]) = V & k[u,v]/(uv) =W.

In particular, W” is smooth. As the morphisms from U” are étale, we conclude that S”,
locally around s, is the disjoint union of two families of nodal curves over C with smooth
generic fibre. Since this is true for all s € D, S” itself is a disjoint union of families of
nodal curves over C with smooth generic fibre.

For wgy/g, since v is a finite morphism, its relative dualizing sheaf is characterized by
the formula

Vv wgv s = FHomg (v, 05y, O5);
see Section oFKW. Evaluation at 1 yields an injection v,wg»/s — 05 whose image is an
ideal sheaf .# of a subscheme supported on D. In fact, this is the ideal sheaf of D. To see
this, since formation of the evaluation map commutes with flat pullback (see Lemmas
0oC6I and 02KH), using the local structure of S around s € D above, it suffices to show
that, for
RY :=k[u] x k[v] < k[u,v]/(uv)=:R
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we have I := Homg(R”,R) = (u, v). Indeed, R” is generated as an R-module by (1,0) and
(0, 1), and they are annihilated by v and u, respectively, so any R-module map ¢ : R” — R
must be of the form

¢0((1,0))=au and ¢((0,1))=pBv forsomea,f3 €R.

Furthermore, this shows that the image of I under the ring extension R — R” is the ideal
of the two preimages of the node. Hence we conclude that v, wgv/s = ¢ the ideal sheaf
of D in S, and so wg»/s = Os»(—D") is the ideal sheaf of D” in S”. |

With the notation above, we have the following intermediate result:
Proposition 6.9. Let f : S — C be a family of stable curves over a smooth projective curve

C. Assume that

(i) the double curve D is a union of sections of f, and
(i) its preimage D := v~1(D) is a union of sections of f*: S¥ — C.

Then f,w®™. is nef for any m > 2.

s/c
Proof. By transitivity of relative dualizing sheaves and Lemma 6.8, v*wg/c = wgv;c(D").
Thus pulling co?/”é back to S” and tensoring with the subscheme sequence for D”, yields

0— wsv/c((m_ 1)D”) — v*(cos/c) — wSV/C(mD”)IDv — 0.
Since D" is an effective Cartier divisor of S”, the adjunction formula, Lemma 0AA4,
together with hypothesis (ii) gives

wsv/c(Dv)le = C()Dv/c = ﬁDv.

Applying v, to the short exact sequence yields an exact sequence on S,
0— v (wsv/c((m_ D) - wS/C ®g, ViOs» — )

Since the preimage of the antidiagonal &}, along the map v, 0g» — 03’2 is Os, there is a
short exact sequence

O—>v( sv/c((m 1)D”))—>wm—>ﬁD—>O.

Now push down to C. Writing f” := f o v: S — C, since the fibres of f are stable
curves, the fibres of f” are stable pointed curves, so R'f ”(wsv/c((m —1)D")) =0 for all

m > 2. The relative Leray spectral sequence for f”, Lemma 0734, shows that R' f, v,(—)
is a subsheaf of R! £.J(=). Thus applying f, to the preceding short exact sequence yields

0 £2(2 ((m—1)D")) > fuwSft = f.0p — 0.

The term on the left is nef by Lemma 6.8 together with (ii) and Proposition 6.7; by (i),

the sheaf f, @), is isomorphic to the sum of copies of ;. Thus f,w?® w / ¢ is an extension
of a direct sum of non-negative line bundles by a nef bundle, and hence nef by Lemma
4.6. |

Putting everything together now gives the main positivity result.

Theorem 6 10. Let f : S — C be a family of stable curves over a smooth projective curve C.

Then f,w S/C is nef for any m > 2.
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Proof. In order to apply Proposition 6.9 to f, we need to arrange for the components of
the double curve D and its preimage D" in the normalization v: S¥ — S to be sections
over C. So let C’ be any such component, and form the Cartesian diagram

S —— S

f ’l lf
;8
¢ — C
By Lemma oE76, f’ is still a family of stable curves. Moreover, the inverse image of C’ is
now a section over C’. Since g* f*w?/"é = f! w?,’?c,, by Lemma 4.3(ii), we may replace f
by f’. Repeating this for every component of D and D”, we may arrange for hypotheses
(i) and (ii) of Proposition 6.9 to be verified, upon which we may conclude. [ |

7.PROJECTIVITY OF THE MODULI OF CURVES

Finally, we put everything together to show that the Deligne-Mumford moduli space
Mg of stable curves is ample over Spec(Z).

The first step is to show that for a family of curves f: X — S over an algebraically
closed field k whose moduli map has finite fibres, there is some m such that 4, pulls
back to an ample invertible sheaf on S. In fact, m = 6 works by using the fact that
tri-canonically embedded stable curves are projectively normal and are determined by
their quadratic equations, see [Mum?7o, Corollary on p. 58]. In the following, we argue
directly and only show that m = 3d work for all sufficiently large d, perhaps depending
on the family f.

Lemma 7.1. Let f : X — S be a family of stable curves of genus g = 2 over an algebraically
closed field k. If the modulimap [f]: S — %g has finite fibres, then [ f 1* As4 = det(f, cog??g)
is ample on S for all d > 0.

Proof. We apply the Ampleness Lemma 5.5 to the multiplication map

Mg - Symd(f*w???s) - f*ws?%i

We choose d sufficiently large so that

(i) the fibres of f are determined by their degree d equations in their tri-canonical
embedding, and
(i) wq is surjective.

®

To see that this is possible, note that by Lemma oE8X, wx:;s

commutative diagram

is f -very ample, so there is a

X —>P

x ln where P := P(f*co;‘??s

S

and ¢ is a closed immersion in which the fibres of f : X — S are embedded as tri-canonical
curves of degree 6g — 6. Thus (i) is satisfied for any d > 6g — 6, as can be seen by taking
joins with disjoint codimension 3 linear spaces; see for example [Mum?7o, Theorem 1].
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As for (ii), let £ be the ideal sheaf of X in P, and consider the sequence

00— #8g, Op(d) = Gp(d) — L*wﬁig — 0.

Then u4 is the direct image under 7 of the surjection. Now S is Noetherian since it
maps finitely to ./ ,, which is of finite presentation over Spec(Z) (see Lemmas 0DSS and
0E9B). Thus relative Serre Vanishing, Lemma 0201, applies to give a d, such that

Rim (s ®g, Op(d)) =0 foralld >d,

whence (ii) is satisfied for any d > d,.

Choose any d > max(6g — 6,d,) and set u := uy. We now verify the hypotheses
of the Ampleness Lemma 5.5. The basic positivity is given by Theorem 6.10, ensuring
that f*w???s is nef. To understand the classifying map, fix a closed point 0 € S and set

V :=H(X,, %> ). For each closed point s € S, choose an isomorphism
0

¢, V> HOX,, w;’?f/k

to view X as being embedded in PV. We obtain maps

uls
sym! (HO(X;, w3°,)) — HO(X;, w3)

ym? ;)
> X, /k

S
po,s: Sym?(V)
whose kernel is the space of degree d equations defining X, in PV. Up to the action of
PGL(V) on the source, u is independent of the choice of isomorphism ¢,. Thus, as
Rlf, “)3?75 = 0 by Lemma oE8X so the base change maps on direct images are isomorphism
by Lemma oD2M, the classifying map of Lemma 5.2 is identified with the map

[u]: § = [G(Sym?(V),q)/PGL(V)] where g := (6d —1)(g — 1),

which sends a closed point s of S to the PGL(V) equivalence class K; of ker(ug ). Now
condition (i) from our choice of d implies that for any two closed points s,s’ € S,

K, =K, ifandonlyif X=X,

meaning [u] has finite fibres if and only if [f]: S — %g does. Thus the Ampleness

®3d is ample. [

Lemma 5.5 applies to show that f,wy /s

Theorem 7.2. The moduli space Mg of stable curves of genus g = 2 is projective over
Spec(Z).

Proof. Since ]g is quasi-compact, by Lemma oE9B, Lemma 1.5 allows us to choose an
integer n such that the invertible sheaf A>" descends to an invertible sheaf %, on Mg
for all m. We show that there exists some m such that %, is ample over Spec(Z).

By Lemmas oE7A and 1.3, %g is a Deligne-Mumford stack with a moduli space, so
[Vis89, Proposition 2.6] shows there exists a scheme S and a finite surjective morphism

p:S— %g. We have a diagram

S —

¢ ]g
Nl
Mg
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We claim that 7t := f o ¢ is a finite surjective morphism of algebraic spaces. Indeed, 7 is
the composition of a finite surjective map ¢ with a universal homeomorphism f (see
Theorem oDUT), so 7 is surjective with discrete fibres. By Lemma 0A4X, finiteness of
7 will now follow from properness of 7. Since %g is proper over Spec(Z) by Theorem

oF9C, the same is true for both S and Mg, by Lemmas oCL7 and oDUZ, respectively.
Hence 7t is proper by Lemma o4NX.

By Lemma oGFB, %, is ample on Mg over Spec(Z) if and only if n*%,, is ample on S
over Spec(Z). Thus it suffices to show that there exists some m such that 7*%,, = @*A%"
is ample over Spec(Z). Let p be a prime number and let S, be the base change of S along

Spec(?p) — Spec(Z). The restriction ¢,: S, — %g of ¢ to S, is finite and satisfies
@At =9 AN s =" Lyls,-

By Lemma 7.1, we may choose d,, such that cp;?Lg?; is ample for all d > d,,. Now Lemma

oD2N gives an open neighbourhood U, of p in Spec(Z) over which Lp*l?c’; is ample. By

quasi-compactness, there exists a finite set of primes P such that Spec(Z) = Upep Up-

Then 7*%,, is ample over Spec(Z) for any m = 3d with d > max(d, | p € P). [ |
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