CALCULUS II ASSIGNMENT 6

DUE MARCH 12, 2019

This **xkcd comic** would have served well for the introduction of this course. In any case, time to continue on the series...

1. Justify why the following series converge and find their sums.¹,

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n^4 + n^2}$$

(ii) $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$, (iii) $\sum_{n=1}^{\infty} \frac{12}{(-5)^n}$,
(iv) $\sum_{n=1}^{\infty} \left(\sin(1/n) - \sin(1/(n+1)) \right)$.

2. Determine whether or not the following series converge or diverge. If they converge, determine their sum.

(i)
$$\sum_{n=1}^{\infty} \cos(n)$$
, (iv) $\sum_{n=1}^{\infty} \frac{n^2}{n^2 - 2n + 5}$,
(ii) $\sum_{k=1}^{\infty} \sin(100)^k$, (v) $\sum_{i=1}^{\infty} \frac{3^{i+1}}{(-2)^i}$,
(iii) $\sum_{m=2}^{\infty} \frac{1}{m^3 - m}$, (vi) $\sum_{\ell=1}^{\infty} \frac{1}{1 + (2/3)^{\ell}}$.

3. The Comparison Test we discussed in class says that given two series $\sum a_i$ and $\sum b_i$ with positive terms, then

- (i) if $\sum b_i$ is convergent and $a_n \le b_n$ for all sufficiently large indices *n*, then $\sum a_i$ is convergent; and
- (ii) if $\sum b_i$ is divergent and $a_n \ge b_n$ for all sufficiently large indices *n*, then $\sum a_i$ is divergent.

Formulate analogues of statements (i) and (ii) for series $\sum a_i$ and $\sum b_i$ with negatives terms. Try to justify your statements using (i) and (ii) above.

4. Use the Comparison Test to determine whether or not the following series converge or diverge:

(i)
$$\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$$
, (iv) $\sum_{\ell=1}^{\infty} \frac{e^{1/\ell}}{\ell}$,
(ii) $\sum_{m=1}^{\infty} \frac{\log(m)}{m}$, (v) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$,
(iii) $\sum_{k=1}^{\infty} \frac{1}{k^k}$, (vi) $\sum_{m=1}^{\infty} \frac{9^m}{3+10^m}$.

¹March 7: I misjudged **1.**(i) and the sum is not so easy to compute. Simply justify why it converges, please!

In some of the comparisons above, it might be useful to know that the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges when p > 1 and diverges when $p \le 1$; note that the p = 1 case is the Harmonic Series, which I mentioned in class. We will see why these statements are true, soon!