CALCULUS II ASSIGNMENT 2

DUE FEBRUARY 7, 2019

1. Compute the following trigonometric integrals:
(i) $\int \sin (\theta)^{2} \cos (\theta)^{3} d \theta$,
(iv) $\int \tan (y)^{2} d y$,
(ii) $\int \frac{\sin (\sqrt{x})}{\sqrt{x}} d x$,
(v) $\int \tan (z)^{3} \sec (z) d z$,
(iii) $\int_{0}^{\pi / 2} \sin (t)^{2} \cos (t)^{2} d t$,
(vi) $\int \sin (8 u) \cos (5 u) d u$.
2. In this Problem, we are going to compute the following relations: for positive integers n and m,

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x= \begin{cases}0 & \text { if } m \neq n \\
\pi & \text { if } m=n,\end{cases} \\
& \int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x= \begin{cases}0 & \text { if } m \neq n \\
\pi & \text { if } m=n,\end{cases} \\
& \int_{-\pi}^{\pi} \sin (m x) \cos (n x) d x=0 .
\end{aligned}
$$

To do this, use the prosthaphaeresis formulae,

$$
\begin{aligned}
\sin (A) \sin (B) & =\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
\cos (A) \cos (B) & =\frac{1}{2}(\cos (A-B)+\cos (A+B)) \\
\sin (A) \cos (B) & =\frac{1}{2}(\sin (A-B)+\sin (A-B))
\end{aligned}
$$

to express the integrands as sums of individual trigonometric functions. Then show that the integrands you get end up being even or odd functions, depending on whether you have $n \neq m$ or $n=m$. If it is helpful to you, feel free to choose specific positive integers n and m representing the cases above in doing this computation.

These relationships are effectively the starting point to Fourier analysis; these give you ways to tease out waves of a particular frequency in some given periodic signal!
3. Use the trigonometric substitution $x=3 \sin (\theta)$ to evaluate

$$
\int_{0}^{1} x^{2} \sqrt{9-x^{2}} d x
$$

Be careful about the bounds of integration once you do your substitution: what must θ be when $x=0$ or $x=1$?
4. Sometimes you are going to have to do some manipulations before being able to perform a trigonometric substitution. Here is an example:
(i) Write the polynomial $3-2 x-x^{2}$ in the form $a-(x+b)^{2}$, for some numbers a and b, by completing the square.
(ii) Do the substitution $u=x+b$ followed by a trigonometric substitution to evaluate the integral

$$
\int \sqrt{3-2 x-x^{2}} d x
$$

5. Given a circle of radius a, its circumference is $2 \pi a$ and its area is πa^{2}.
(i) Compute the integral $\int_{0}^{a} 2 \pi r d r$.
(ii) Thinking about polar coordinates, try to explain how the computation in (i) is a way of computing the area of a circle of radius r.
As an analogy, it might be helpful to think about how the integral

$$
\int_{0}^{1} x d x
$$

computes the area of the right triangle

where the vertices are at $(0,0),(0,1)$, and $(1,1)$.

