CALCULUS II ASSIGNMENT 12

DUE MAY 2, 2019

1. Use the method of cylindrical shells to find the volume of the following solids rotation:
(i) Spin the region bound by $y=\sqrt[3]{x}, y=0, x=1$ around the y-axis;
(ii) Twist the area bound by $x=1+(y-2)^{2}$ and $x=2$ about the x-axis;
(iii) Rotate the region between $y=x^{2}$ and $y=6 x-2 x^{2}$ around the y-axis;
(iv) Twirl the space between $y=\sqrt{x}$ and $x=2 y$ about the line $x=5$.
2. Use both methods discussed in class to compute the volume of the solid obtained by spinning the region bound by the $y=\tan (x), x=\pi / 4$, and $y=0$ around the y-axis.
3. Find the length of the following curve segments:
(i) $y=x-\log (x)$ between $1 \leq x \leq 4$;
(ii) $y=\frac{x^{3}}{3}-\frac{1}{4 x}$ between $1 \leq x \leq 2$;
(iii) $y=\log (\sec (x))$ between $0 \leq x \leq \pi / 4$;
(iv) $y=\frac{1}{2} x^{2}$ between $-1 \leq x \leq 1$.
4. Find the length of the curve defined by $x^{2 / 3}+y^{2 / 3}=1$. In setting up you integral, it may be helpful to use the symmetry of this curve.
