CALCULUS II ASSIGNMENT 12

DUE MAY 2, 2019

- **1.** Use the method of cylindrical shells to find the volume of the following solids rotation:
- (i) Spin the region bound by $y = \sqrt[3]{x}$, y = 0, x = 1 around the *y*-axis;
- (ii) Twist the area bound by $x = 1 + (y 2)^2$ and x = 2 about the *x*-axis;
- (iii) Rotate the region between $y = x^2$ and $y = 6x 2x^2$ around the *y*-axis;
- (iv) Twirl the space between $y = \sqrt{x}$ and x = 2y about the line x = 5.

2. Use both methods discussed in class to compute the volume of the solid obtained by spinning the region bound by the $y = \tan(x)$, $x = \pi/4$, and y = 0 around the *y*-axis.

3. Find the length of the following curve segments:

- (i) $y = x \log(x)$ between $1 \le x \le 4$;
- (ii) $y = \frac{x^3}{3} \frac{1}{4x}$ between $1 \le x \le 2$; (iii) $y = \log(\sec(x))$ between $0 \le x \le \pi/4$;
- (iv) $y = \frac{1}{2}x^2$ between $-1 \le x \le 1$.

4. Find the length of the curve defined by $x^{2/3} + y^{2/3} = 1$. In setting up you integral, it may be helpful to use the symmetry of this curve.