CALCULUS II ASSIGNMENT 11

DUE APRIL 25, 2019

1. Perhaps a somewhat enlightening way to solve second-order linear differential equations is to use some sort of series method. We will solve the equations

$$
y^{\prime \prime}=y \quad \text { and } \quad y^{\prime \prime}=-y
$$

using this method.
(i) Assume that the equation $y^{\prime \prime}=y$ admits a solution f which is a function with a Taylor series expansion

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

Use the equation $f^{\prime \prime}=f$ to get a relationship between the coefficients c_{n} and c_{n-2}.
(ii) Use the relationships from (i) to express $c_{2 n}$ in terms of c_{0} and $c_{2 n+1}$ in terms of c_{1}.
(iii) Use (ii) to recognize that the power series for f must be obtained as a linear combination of the power series of e^{x} and e^{-x}, yielding the general solution to $y^{\prime \prime}=y$.
(iv) Apply the same method to solve $y^{\prime \prime}=-y$.
2. Find the following areas. It may be helpful to sketch out what the regions look like.
(i) $f(x)=\sin (x)$ and $g(x)=x$ on the interval $[\pi / 2, \pi]$.
(ii) The area enclosed by $f(x)=x^{2}$ and $g(x)=4 x-x^{2}$.
(iii) The region enclosed by $f(x)=\frac{x}{1+x^{2}}$ and $g(x)=\frac{x^{2}}{1+x^{3}}$.
(iv) The area enclosed by $f(x)=1 / x, g(x)=x, h(x)=x / 4$ when $x>0$.
3. Find the volume of the following solids of rotation:
(i) Spin the region $y=x+1, y=0, x=0$, and $x=2$ about the x-axis.
(ii) Rotate $y=e^{x}, y=0, x=-1$, and $x=1$ about the x-axis.
(iii) Turn $y=x^{2}$ and $x=y^{2}$ around the line $y=1$.
(iv) Gyrate $y=x^{3}, y=0$, and $x=1$ about the line $x=2$.

